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1. Introduction

My objective in this paper is to give some of the basic results in the theory of bifurca-
tion in differential equations. It is difficult to trace the historical development of any im-
portant concept and bifurcation theory is no exception. However, a careful study of litera-
ture shows that Poincaré [1], [2] and Liapunov {1], [2] are responsible for our present
basic philosophy as well as several of the fundamental ideas of the methods that we pres-
ently employ. These two persons can be directly linked with the importance of exchanges
of stability, the occurrence of complicated motions in dynamical systems, the principle of
reduction to lower dimensional problems, the philosophy of genericity and the transforma-
tion theory of differential equations that is so important in obtaining approximations of the
center manifold and the flow on the center manifold. In many respects, we are still exploit-
ing the ideas of these two giants.

After the initial impetus of Poincaré and Liapunov, it is somewhat surprising that
modern bifurcation theory did not appear at an earlier date. It is perhaps true that the
ideas of Liapunov connected with bifurcation theory were being developed more extensively
than the corresponding ones of Poincaré. There was a very active group in the U.S.S.R.
(consisting of Andronov, Vitt, Khaikin, Bogoliubov, Krylov, Leontovich, Malkin and others)
working on critical cases in stability theory, nonlinear oscillations and the general theory of
integral manifolds. The techniques developed from the study of these areas are fundamental
ingredients in dynamic bifurcation theory (see Hale {1] for some references).

A fundamental step towards modern bifurcation theory in differential equations oc-
curred with the definition of structural stability of Andronov and Pontrjagin [1] in 1937
and the classification of structurally stable systems in the plane. With these concepts, An-
dronov and Leontovich [1] were able to make precise definitions of types of bifurcation
points which had the possibility of being classified. These results were applied extensively
to the theory of nonlinear oscillations by Andronov, Vitt and Khaikin in 1937 (the second
edition of this book is Andronov, Vitt and Khaikin [1]). As Minorsky [1] said in 1962:
“Having established the initial advance in the field of nonlinear oscillations (up to 1940), the
Russian scientists maintain their leadership and initiative characterized by a remarkable co-
ordination of efforts between the mathematical and experimental parts of these fundamental
researches.” There were several important developments in this intervening period by Levin-
son [1], [2], Cartwright and Littlewood (see Cartwright [1]) on the forced van der Pol and
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2 JACK K. HALE

Lienard equations. However, in western Europe and the United States, the interest in this
aspect of differential equations had never been very extensive. In addition, there was little
awareness of the developments that had been made in the U.S.S.R., and, as a consequence,
some duplication of effort occurred.

Since 1960, there have been extensive developments in the abstract theory of dynami-
cal systems. At the same time, some of this theory has been applied to very interesting
problems in the biological and physical sciences. In an attempt to explain phenomena that
occur in nature, it has been necessary for researchers to discuss the dynamic bifurcation of
specific types of equations in great detail. This has led to an exciting interaction between
analytical and theoretical methods.

In this paper, we present some of the concepts and results that play an important role
in these areas. When the dimension of the system is one or two, one can obtain a rather
complete theory at least for general one parameter families of vector fields. For either
several parameter problems or for the dimension of the system greater than two, only par-
tial results are known. On the other hand, the results in low dimension are applicable to
higher dimensional problems (even infinite dimensional ones) when the discussion is restricted
to a neighborhood of an equilibrium point for which the theory of center manifolds can be
employed.

The table of contents expresses in general terms the substance of this paper. The first
eight sections deal with structural stability and bifurcation in the low dimensional problems
mentioned above. §9 is devoted to the formulation of some of the basic problems in the
qualitative theory for a special class of dynamical systems in infinite dimensions. This class
is general enough to include many functional differential equations and partial differential
equations. §10 is concerned primarily with some types of bifurcation that occur because
the base space is infinite dimensional. Due to space, very few proofs are given. Also, there
are several important omissions of topics from differential equations that are systematically
used throughout, but which are not as well known as they should be. Most notable among
these are the general theory of integral manifolds (for general references, see Hale [1]), the
center manifold theorem (see Kelley [1]), the theory of transformation to normal forms
(for references, see Bibikov {1], Br'juno [1], Henrard [1]) and the general method of
averaging (for references, see Hale [1]).

The author is endebted to many colleagues and students whose ideas have been incor-
porated into these notes—too many to mention by name. He also acknowledges the initia-
tive of Professor Laksmikantham in proposing the CBMS Regional Conference. Finally,
Sandra Spinacci has exhibited her usual patience and understanding in the preparation of the
final manuscript.




2. On the definition of bifurcation L

Suppose X, Z are topological spaces, U C X is open, A is an open set in a topological
space and f: U x A — Z is a given continuous function. Let

S={(x, VEU x A: f(x, N) = 0}

be the set of solutions of the equation f(x, \) = 0. For a fixed A, let

S, = {x: (x, \) €S}

be the *“cross-section™ of the solution set at A.

The basic problem is to discuss the dependence of the set §, on A. In a specific prob-
lem, one has a prescription which compares S, with §,, for different A and u. This com-
parison is usually made by means of an equivalence relation which divides the sets {S,. X € A}
into equivalence classes. Given the function f and an equivalence relation ~, we say A, is a
bifurcation point for (f, ~) if, for any neighborhood V of A, there are A,, X, € V such
that SM %+ Sy, This definition is less general than the one in Marsden [1}.

A special case is when the equivalence relation specifies that S\ ~ S, if the sets S,
and S, are homeomorphic. This is a very convenient choice when studying the change in
the structure of the set of equilibrium points in a differential equation as parameters are
varied. In this case, the function f represents the vector field in a differential equation
dx/dt = f(x, A). It is also appropriate in differential equations for the study of the set of
solutions of some prescribed type; for example, periodic solutions, invariant tori, etc. In
this latter case, the topological spaces are defined so that they include only those functions
which exhibit this prescribed behavior and the function f could be the differential operator,
f(x, \) = dx/dt - g(x, \).

To study more general bifurcations in differential equations, the equivalence defined
by homeomorphism is not sufficient. Consider a differential equation du/dt — g(u, \) = 0
where (4, A\) € x A and £ is an open set in some Banach space £. For X, Z Banach spaces
of functions from [0, ) to E, let U C X be defined by U = {u € X: u(?) € Q, t € [0. =)j.
The above equation can be written formally as f(u, A) = 0 where f: U x A — Z, f(u, AX1)
= du(t)/dt — g(u(t), \). Assuming everything can be made rigorous and that zll solutions
are obtained in this way, a comparison of the corresponding sets §, and §, by homeomor-
phism will not be very interesting. Thus an alternative approach must be taken.

Suppose the differential equation generates a strongly continuous semigroup T, (#),
t>0,0n Q. A frequently used concept of equivalence in differential equations is to say




4 JACK K. HALE

that g(-, A) ~ g(:, u) if there is a homeomorphism h: £ — £ such that A maps orbits of
T,(#) onto orbits of T“(t) preserving the sense of direction in time. A vector field g(-. Ay)
is structurally stable if there is a neighborhood ¥ of X, such that g(-, A) ~ g(-, X,) for all
A € V. Thus, N\, is a bifurcation point if A, is not structurally stable.

A different but equivalent formulation of the above concept of equivalence in differen-
tial equations was introduced by Andronov and Pontrjagin [1] in 1937 for differential equa-
tions in the plane. They gave a characterization of the structurally stable vector fields which
will be discussed later. Peixoto [1] generalized these results to arbitrary compact two di-
mensional manifolds and proved the set of structurally stable vector fields is open and dense.
For some time, it was the feeling that this same property should hold true for arbitrary sys-
tems. Unfortunately, it was shown by Smale [1] that structurally stable vector fields are
not dense in dimension > 4. Williams [1] proved the same result for n > 3. Since many
vector fields cannot he compared by this equivalence relation, it becomes necessary to
weaken the concept of equivalence. Each new definition of equivalence leads to a new type
of stable vector field (ones which are equivalent to everyone in a neighborhood of it) and
thus a new type of bifurcation. The ultimate goal is to have the definition restrictive enough
to permit classification of the stable ones, but, at the same time, to have the stable vector
fields generic; that is, the intersection of a countable sequence of open dense sets. Much of
the research in finite dimensional abstract dynamical systems in the last twenty years has
been devoted to this general problem. Relevant references are Smale [2], Peixoto [2]. [3].
Palis and Melo [1], Newhouse [1], Nitecki [I], Shub {1]. Guckenheimer [1], Arnol'd [1].
In the next section, we give more specific details.

When the evolutionary equation is infinite dimensional, several new problems arise.

This case will be discussed in a later section.




3. Structural stability and generic properties in R”

Suppose 2 is an open set in R® with 3Q =T, @ = QUT.

The space C"($2, R™) is the Banach space of functions bounded and continuous to-
gether with all derivatives up through order r > 0 with the norm of £ in C"(§2, R™) being
given by the maximum of the supremum over §2 of the norm of f and its derivatives up
through order r. Let X1, = X% (Q) be the set of elements of C'($2, R") which are transver-
sal to . For any f € X}, r > 1, the differential equation

3.1) X =fx)

defines a family of transformations Tf(t) on O satisfying the semigroup property with
Tf(t)xo = x(t, x4), w_here x(t, xq) is the solution of (3.1) with x(0. x4) = x,. Further-
more, for each x, € §2, there are ana, < 0,5, > 0, such that the maximal interval of
definition of T (f)x is [a, . B, ). The number a, is either that value a,  where
T,(axo)xo € 32 = I or ~=0 and in this case the interval [axO, ﬁxO) is (~oo, ﬁxo). The B
number on is defined in a similar way in the positive direction. The operator Tf(z) on 1
satisfies T,(0) = /, the identity, Tf(t +5)x = Tf(t)Tf(s)x for those ¢, s for which it is
meaningful and Tf(t)x has continuous derivatives up through order r in ¢, x.

The orbit 7f(x) of f through x is

17(x) = U{T(0)x, ¢ € [a,,8,]}.
The w-limit set w,(x) and a-limit set a ,(x) of the orbit 71(") are defined by

w =N UTOx ox)= Nd U T,0)x
20 1271 T€0 <7

An equilibrium point ot critical point of f is a zero of f. A periodic orbit of f is an orbit
which is a closed curve. A set M C {1 is invariant if, for each x € M, T,(f)x is defined for
t € (— oo, %) and belongs to M for ¢t € (-, ). This implies Tf(t)M = M for t € (-0, =),

The vector fields in (3.1) are chosen from X},; that is, are transversal to T', in order
to eliminate technical difficulties with points of contact on I'. We are discussing the vector
fields in R”, but many of the remarks hold for vector fields on compact manifolds M.

DEeFINITION 3.1. Two vector fields £, gin X', r 2 1, are equivalent, [ ~ g, if therc
is a homeomorphism h: & — & such that 4 maps the orbits defined by f homeomorphic-

ally onto the orbits defined by g with the sense of direction in time preserved. An f€ X7,
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is said to be structurally stable if there is a neighborhood U of fsuch that f ~ g for every
g€ U. Anf€ X} is a bifurcation point if f is not structurally stable.

Two important remarks need to be made about this definition. Definition 3.1 would
not be meaningful without the condition r > 1. In fact, for r = 0, given any vector field f
that has an isolated zero at x, and any € > 0, there are a & > 0 and a function g such that
{f—gl <eand gx) =0 for {x — x| < 8. Therefore, no f with an isolated zero could be
structurally stable.

In Definition 3.1, it is tempting to require that the mapping # be a diffeomorphism.
However, if f(0) = 0, g(0) = 0, 3f(0)/dx = A, 9g(0)/dx = B, and f ~ g in a neighborhood
of zero, then one can show (see Peixoto [2], (4]) that the eigenvalues of 4 and B must be
proportional. Since one can always make a small perturbation that will change one eigen-
value of 4 and not the other, it follows that no vector field with a zero could be structurally
stable. Thus, the Definition 3.1 would have little meaning. If x is a critical point of f and
A = 3f(xy)/dx, then x4 is said to be hyperbolic if the real parts of the eigenvalues of A
have nonzero real parts. The point x,, is a saddle point of order k, if it is hyperbolic and
there are k eigenvalues of 4 with positive real parts. The term saddle point without the
designation of the order will refer to any saddle point of order k with k # 0 or n.

If n == 2, a saddle point of order | corresponds to the usual definition of saddle point.
For n = 2, a saddle point of order 0 or 2 corresponds to a rode or focus depending upon
whether the eigenvalues of A are real or complex.

If v is a periodic orbit of £, then one can define a Poincaré map near 7y in the following
way. For any arc C transversal to v at py and any p € C sufficiently near p,, there is a
unique 7(p) > 0 such that Tf(-r( p)p €C, Tf(t)p &€ Cfor0<t<7(p). The mapp —
Tf('r(p))p is called the Poincaré map m(p). This map in C" and n(p,) = py. The periodic
orbit vy is Ayperbolic if no eigenvalue of 8m(p,)/dp has modulus one.

If n = 2, the periodic orbit 7 is hyperbolic if dn(py)/dp # 1. It is instructive to give
an equivalent definition in terms of the vector field itself. If ¥ = {&(r). t € R} where ¢{¢)
is periodic of least period w and #(t) = f(¢{2)) then the linear variational equation for ¢ is

(3.2) y=A@)y, A@) = of(¢(r)/ox.

One characteristic multiplier of this cw-periodic system is 1 since o satisfies (3.2). If X(z) is
a principal matrix solution of (3.2), then the product of the multipliers is equal to det X(w).

Thus, if P, = €Xp WO, 0 real, is the other multiplier, then

Y
!
(3.3) 0, = Sf: tr A(s)ds.

One can then easily show that 1 is hyperbolic if and only if 0, # 0, unstable if o, > 0 and
asymptotically orbitally stable if o, <O0.

For two dimensional systems, the following result of Andronov and Pontrjagin [1].
Peixoto [1], completely solves the problem of structural stability in X}.
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TueoreM 3.2, If 25 C XY, r > |, & the set of structurally stable vector fields in X,
then f € Z% if and only if the following conditions are satisfied:

(i) The critical points of f are hyperbolic.

(ii) The periodic orbits of f are hyperbolic.

(iii) There is no orbit of [ with both the a- and «r-limit sets being saddle points.

Furthermore, T} is open and dense in X5.

The fact that a structurally stable vector field must satisfy (i)—(iii) is very easy to
prove. However, the converse is more difficult and relies heavily upon the following result
of Hartman (1], (3] Grobman (1], and its extension to diffeomorphisms which is valid in
the space of ndimensional vector fields X7,.

THEOREM 3.3 (HARTMAN-GROBMAN). If fE€ X], r2 1, f(xy) = 0, and the eigen-
values of A = 3f(x,)/8x have nonzero real parts then, in a neighborhood of x,, [ Is equiva-
lent to the linear equation x = Ax.

In Theorem 3.2, the fact that X} is open follows from the definition and the fact that
it is dense follows from an argument in transversality theory. See Peixoto [1] for a com-
plete proof.

Condition (i), the Implicit Function Theorem and the compactness of Q imply that
f € I, has only a finite number of critical points. Using (ii), (iii) and similar arguments, one
shows there is only a finite number of periodic orbits.

The simplicity of the Jescription of the structurally stabie systems in two dimensions
given by Theorem 3.2 permits a complete classification in terms of certain distinguished
graphs (see Peixoto {4]).

To what extent does Theorem 3.2 hold in dimension n 2> 3?7 As remarked earlier. the
structurally stable systems are not dense in X;, for n > 3. This was proved by Smale [1]
for n > 4 and by Williams [1] for n 2 3. However, there are structurally stable systems in
every dimension and on every type of n-dimensional manifold.

Even though Z7 is not dense, it is very important to classify structurally stable vector
fields and to find “simple” classes of vector fields which are generic. Let us turn first to
the problem of genericity.

The concepts (i), (ii) in Theorem 2 have meaning in R". Also, (iii) can be ex-
tended in the following way. For any hyperbolic critical point or periodic orbit of a
vector field f € X],, one can definc the global stable and unstable manifolds in the fol-
lowing way. The stable (unstable) manifold of a hyperbolic criticai point x; is the set
of x €  such that T,(t)x — xo a5t — +oo (~oo) Similar definitions are given for a
periodic orbit.

In R?, condition (iii) is then equivalent to the statement that the stable and unstable
manifolds of all critical points and periodic orbits intersect transversally. One can then ask
if the vector fields in X/, which satisfy these properties are generic in X],. The answer is
yes and is the famous theorem of Kupka [1] and Smale [3].
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THEOREM 34 (KUPKA-SMALE). The set of vector fields in X, for which the critical
points and periodic orbits are hyperbolic with stable and unstable manifolds intersecting
transversally is generic.

Any vector field satisfying the conditions of Theorem 3.4 will be called a Kupka-Smale
(KS) vector field. They can have only a finite number of critical points with the proof being
the same as in two dimensions. However, in contrast to two dimensions, there can be an
infinite number of periodic orbits if the dimension is 2 3 (for an example, see Nitecki {1],
Palis and deMelo [1]).

The KS vector fields are dense, but all KS vector fields cannot be structurally stable
since the structurally stable systems are not dense in dimension > 3. To find a subset of
the KS vector fields which are structurally stable, one must put some further restrictions on
the behavior of the a- and w-limit sets of orbits.

For f€ X" . let

L(f)={p:pE€afq)tor some q}. L)) ={p:pE w(q) for some q}.

DEFINITION 3.5. Suppose £ € X,. A point p € Q is a wandering point of f if there
are a uecighborhood V of p and 75, > 0 such that if |/ > ¢, then Tf(t) VAV =g Inthe
contrary case, p is a nonwandering point of f. The set of nonwandering points of f is de-
noted by U f).

In Definition 3.5, the notation [¢| > £, means for all £ 2 ¢4 and all # < -1, as long as
the orbit is defined.

We remark that Q(f) D L (f) U L_ (). but it is easy to construct examples for
which the inclusion is proper (see, for example, Palis and deMelo [1]).

DEFINITION 3.6. A vector f € X, is Morse-Smale (MS) if it is KS with a finite num-
ber of critical points and periodic orbits with §( /) equal to the set of critical points and
periodic orbits.

Some of the basic results on Morse-Smale systems are due to Smale 4], Palis [1] and
Palis and Smale [1]. They are summarized in the following theorem which is also valid for
vector fields on any compact manifold.

Turorkm 3.7. (1) The set of MS systems is vopen and nonempty in X, for any n.

(2) Any f€ MS is structurally stable.

(3) The set of gradient vector fields which are MS is open and dense in the set of all
gradient vector fields.

Since the MS systems are structurally stable, they cannot be dense in dimension nn > 3.
On the other hand, one can ask if there are any other structurally stable systems which are
not MS. One way to answer this question is to construct a structurally stable system with

infinitely many periodic orbits.

To see how such a situation might arise, suppose §2 C R and f € X’J(ﬁ) has a hyper-
bolic periodic orbit v. Let WS(y), W"(v) be the stable and unstable manifolds for y and let
7 be a Poincaré map of some transversal 7 of y at p and Wi(y) = Wi(y) O, Wiy) = W () 0r:
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that is, that part of the stable and unstable manifolds in the transversal 7. Then Wi(v),

W/ (7) are the local stable and unstable manifolds of the point p as a fixed point of the dif-
feomorphism 7. There is the possibility that Wi(y) N W)'(v) contains points other than the
fixed point p of m. Any such point g is called homoclinic to p. A point q is called rrans-
verse homoclinic to p if W;(v) is transversal to W¥(y) at q. If q is transverse homoclinic to
. then the behavior of the stable and unstable manifold is very bad. In fact, since nW?(y)
C Wi(y), nW/(7) C W¥(y) and q € Wi(y) N W!(y), g # p. we must have 7" € Wi(y) N
W'(y)foralln=0,21,22, .. and n"g — p as n — o= If, in addition, ¢ is transverse
homoclinic to p, continuity of the map 7 implies that the picture near p must be something
like the one in Figure 1. The arrows do not represent the direction of a flow as for vector
fields, but only that points move in the direction indicated under iterates of n. In Figure 1,
we have only indicated some of the complications that are arising from looking at the for-
ward evolution of the unstable manifold. The same type of thing must occur with the
stable manifold. Note that there will be infinitely many transverse intersections in any
neighborhood of the homoclinic point 4.

Wi(p)

We(p)

FiGgure 1.

This phenomenon was observed by Poincaré {1]. Birkhoff [1] proved that every
transverse homoclinic point is the limit of periodic points (that is. points x such that 7”7x = x
for some integer n) and indicated some of the random behavior that occurs near these
points. Smale [1] carried the analysis even further. We briefly describe the results following
Moser [2]. If A is a finite or countably infinite sequence of symbols, let § be the collec-
tion of doubly infinite sequences s = {5,, k = 0. 21, ...} with each 5, € A. The shift
automorphism ¢ on S is defined by os = {3, k=0, 1, ..}, 5, =5, , forall k.

Near a homoclinic point ¢, we can construct a small quadrilateral Q, two of its sides
consisting of parts of W}'(p), Wi(p) and the others parallel 1o the tangents of these sefs af
¢ (sec Figure 1). For any point « € @, let k& = k(a) be the smallest positive integer such that
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7*(a) € Q, if it exists. Let D(7) be the set of a € Q for which such a k exists and define
%o = n*(a) for « € D(F). The map 7 is called the transversal map of = for the quadrilateral Q.

THEOREM 38. If n is a C™ diffeomorphism of the plane with a point q transverse
homoclinic to a hyperbolic fixed point p, then in a neighborhood of q, the transversal map
T of a quadrilateral possesses an invariant set I homeomorphic to the sequence space S with
an infinite number of symbols by a map 1: S — I such that Tt = rg. Also, there is an in-
teger k, an invariant set T of n* and a homeomorphism 7: § — T, where S is the sequence
space of a finite number of symbols, such that 17 = To.

Note the difference in the two conclusions in the theorem. In the first part, the set /
is invariant for % and 7 is equivalent on / to the shift automorphism on an infinite number
of symbols. In the second part, the set T is invariant undes a fixed power k of 7 itself and
n* is equivalent on T to the shift automorphism on a finite number of symbols.

It follows immediately from Theorem 3.8 that there are infinitely many periodic
points in a neighborhood of the transverse homoclinic point and they are dense. Also, there
is a random behavior to the orbits on the invariant set I (or 7) since knowing the early
terms of a sequence tells nothing about the later terms of a sequence.

For examples of transverse homoclinic points in celestial mechanics, see Moser [2].
Transverse homoclinic points also occur in structurally stable systems as we shall see below.
More examples in second order nonautonomous differential equations will be given later
when we are studying analytical methods in bifurcation theory. Now, we prefer to continue
the general survey.

To describe further aspects of the theory, it is convenient to work with Diff"(M),

r 2 1, the space of diffeomorphisms with derivatives up through order r on a smooth com-
pact manifold M. This can be related to differential equations in several ways. One of the
most important is through a Poincaré map for periodic orbits as described above. More gen-
erally, if f€ X;(ﬁ), M C § is compact and, for each x € M, there is a 7(x) > O such that
Tr(x)x €M, T,()x & M, 0 <t < 7(x), then the map x — Tf(r(x))x is in Diff "(M) if it
has the required number of derivatives.

If g € Diff"(M), a point p € M is a periodic point of g if there is a positive integer
n = n(p) such that T”p = p. The periodic orbit is hyperbolic if no eigenvalue of dg( p)/ox
has modulus one. For each hyperbolic periodic point p of g, one can define the global
stable manifold W*(p) and unstable manifold W¥(p) in a manner similar to the definitions
for vector fields.

We now give an example due to Thom which was an inspiration for many further de-
velopments in dynamical systems. In R? identify the points (x, ), (x + m, y + n) for all
integers m, n. Any unit square with integer vertices may be identified with the torus T2
and any mapping of the plane into itself yields a mapping of T2 into T2 in the obvious way.
Let L be a 2 x 2 matrix with integer coefficients, determinant 1 and real eigenvalues. The
eigenvalues are then A, A ™! with A < 1 irrational. This implies that the linear subspaces
ES, E“ generated respectively by the eigenvectors for X, A~! have irrational slope. For any
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x € R?, each of the lines x + £*, x + £ is invariant under L. The map L on R? generates
a natural map « on 7'2 obtained from the above identification of T2 with unit squares in
R? with integer coefficients. If p = mx € T2, x € R?, let W¥(p) = n(x + £%), W¥(p) =
n(x + E¥). X p is a periodic point of m, then W*(p), W¥(p) are respectively the stable and
unstable manifolds of p. Since the slopes of the linear subspaces E*, E¥ are irrational, the
sets W¥(p) and W¥(p) are dense in T2 for every p € T?. Furthermore, it is not difficult to
show that every point of intersection of these sets is a point of transversal intersection. Also,
the points of intersection are dense in T2. In particular, there is a dense set of points trans-
verse homoclinic to the critical point p = m(0). Since each transverse homoclinic point is
the limit of periodic poiats, it follows that the periodic points of  are dense in T2. A sim-
ple direct proof of this last result is contained in Palis and deMelo {1, p. 171].

With m: T2 — T? defined as above, Anosov {1], [2] showed that 7 is structurally
stable. A more elementary proof was given by Moser [1}, [2]. Since = is structurally stable
and contains infinitely many periodic orbits, this necessarily implies that the Morse-Smale
systems are not dense in the set of structurally stable systems.

The above example was generalized by Anosov [2] in the following way.

DEFINITION 39. Let M be a compact manifold. An f € Diff"(M), r = 1, is an Ano-
sov diffeomorphism if the tangent space at each point x of M is a direct sum £5 @ £ in-
variant under the derivative Df; that is, Df, E3 = Ej(,) DI £ = Ef,) and there is a Rie-
mannian metric on M and a constant X € (0, 1) such that {|Df,v| < Alvl, lDf;'ul < Aluj for
Al xEM, vEE}, uEEY.

Anosov {2] has shown that these diffeomorphisms are structurally stable. A simpler
proof was given by Moser [1], [2]. For a discussion of the restrictions that are imposed on
the manifold M in order for it to admit an Anosov diffeomorphism, see Palis and deMelo |1].

The next important step in the abstract theory of dynamical systems was taken by
Smale [2] by defining systems which satisfy Axiom A. Suppose f € Diff"(M) and A C M
is a closed invariant set. The set A is said to have a hyperbolic structure if the tangent space
at each point x € A is the direct sum E; ® EY invariant under Df and there are a Rieman-
nian metric and \ € (0, 1) such that [Df,vi < Nvl, 1Df, 'ul < Mu) for x € A, v € ES,

u € EY. If A is hyperbolic, it is possible to define stable and unstable manifolds for the
set A by looking at asymptotic orbits.

DeriniTiON 3.10. f € Diff"(M) satisfies Axiom A if the set of nonwandering points
Q f) is hyperbolic and the periodic point. of f are dense in £2(f).

If f satisfies Axiom A, Smale [2] has shown that 2(f) = §2, U Q, U --- U Q, where
each Q, is closed invariant and transitive; that is, has a dense orbit. Robinson {1} has shown
that any f € Diff"(M), r > 1, is structurally stable if it satisfies Axiom A and all stable and
unstable manifolds intersect transversally. An f € Diff"(M) is said to be absolutely stable if
there are a neighborhood V(f) C Diff"(M) of f and a constant K > 0 such that, for every
g € V([), there is a homeomorphism h of M such that hf = gh and (h ~ fi, <K{f - gl,
where ||, designates the norm in C°. Results of Franks {1]. Guckenheimer [1] and
Mafié [1} show that f is absolutely stable if and only if it satisfies Axiom A and all stable
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and unstable manifolds intersect transversally. Maiié (unpublished) has also recently shown
that Axiom A is implied by structural stability and a technical condition on the characteris-
tic exponents of Liapunov on (f).

It is also possible to study structural stability restricted to the set of nonwandering
points. More specifically, f € Diff"(M) is said to be Q-stable if there is a neighborhood ¥(f)
of f such that, for every g € W f), there is a homeomorphism #: §(f) — Q(g) such that
hf = gh on Q(f). I [ satisfies Axiom A, Uf) = Q, U - U Q,, then a cycle of Qis a
sequence p, € le, WD € ﬂk' = le such that W(p)) N W¥(p,, ) # 8, 1 <i<s- 1.
Smale [2] showed that Axiom A and no cycles imply Q-stable. Palis {2] has shown that
any f satisfying Axiom A is not §2-stable if it has a cycle. It is not known if f 2-stable im-
plies that it must satisfy Axiom A.




4. Stability and bifurcation at a zero eigenvalue

Suppose 4 is an n x n constant matrix whose eigenvalues have negative real parts,
xER yER" X, € C*(R x R",R), Y, € C*(R x R*, R™), k > 1, are functions of
(x, ¥) € R x R" which vanish together with their first derivativesat x = 0, y = 0. One of
our objectives in this section is to determine how the stability properties of the solution
x =0, y = 9, of the equation

4.1) X=Xox, »), y=Ay+ Yyx »)

depend upon the nonlinear functions X, Y.
For a given neighborhood U of x = 0,y = 0,and X € CX(U, R), Y € C*¥(U, R),
k = 1, we also discuss how the number of equilibrium solutions of the perturbed equation

4.2) X=Xglo, p) + X(x, y), V=Ay+ Yi(x, y)+ Y(x, y)

depends upon X, Y in a neighborhood of X = 0, ¥ = 0. The stability properties of these
solutions will be considered. A complete classification is given for some cases. The neigh-
borhood U will be fixed and our analysis always will be in some other neighborhood ¥ of
x = 0, v = 0 which will be a subset of U.

LeMMA 4.1. There are a neighborhood V of (x, y) = (0, 0) and a neighborhood W
of (X, Y) = (0, 0) such that, for (X, Y) € W and any equilibrium point « = o(X, Y) of
(4.2) in V, the stable manifold has dimension 2 n. Furthermore, there is an ri-dimensional
manifold S(a, X, Y)in V containing o such that any solution of (4.2) with initial value in
Sla, X, Y) approaches a as t — o exponentially. Furti:crmore, Sta, X, Y) is C¥ in (X, ¥)
and the tangent space to S(a, X, Y) at o approaches the space {(0, v). y € R"} as (X, V)
— (0. 0).

A proot will not be given. It is technical but may be supplied by using the ideas in
Coddington and Levinson [1), Hale {1} or Hartman [2] for the construction of stable man-
ifolds.

For equation (4.2).a set § C R"*! is a local invariant manifold if. for any (xg, V)
€ §, there is a T > 0 such that the solution of (4.2) through (x4, y,) remains in § for
|t} < T. If T = oo, we say S is an invariant manifold. 1f there is a C' function Y(x, X, Y)
defined in a neighborhood of (x, X, Y) = (0, 0, 0) such that (0, 0, 0) = 0, 3y(0,0, 0)/dx
=0and S=8S(X, Y)= {(x, v): y = g(x, X, Y} is a local invariant manifold for (4.2).
then we say S is a local center manifold for (4.2).
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Because the matrix 4 has eigenvalues with negative real parts, it is reasonable to ex-
pect that there is a local center manifold for (4.2). This idea is implicit in the papers of
Krylov and Bogoliubov written in the 1930's (see Hale [1] for references) and was used ex-
plicitly by V. Pliss [1] to study stability. Kelley [1], [2] has given a very complete and
readable account of this idea. More precisely, he has shown the existence of a center mani-
fold which is C* in (x, X, Y)in a sufficiently small neighborhood V¥ (depending on &) of
(x, ) = (0, 0). A center manifold is also exponentially stable in the sense that any solution
which remains in the neighborhood V of (x, y) = (0, 0) approaches the center manifold ex-
ponentially as £ — oo,

The flow on a center manifold S(X, Y) is given by the scalar equation

x=u(x, X, Y),
ulx, X, Y) = Xy(x, ¥(x, X, Y)) + X(x, ¥(x, X, Y)).

If a is an equilibrium point of equation (4.2}, then a € §(X, Y). a = (x,, ¥(x,. X, V) for
some x,. The converse is also true. The stability properties of x as a solution of (4.3) are
easily determined from the behavior of u(x, X, Y) near x = x,. From Lemma 4.1, the
stability properties of x, are reflected in an obvious way in the stability properties of a as
a solution of (4.2). In particular, x,, being a stable (asymptotically stable) (unstable) equilib-
rium point of (4.3) is equivalent to a being a stable (asymptotically stable) (unstable) equi-
librium point of (4.2).

From the above discussion, the complete structure of the flow for (4.2) is deter-
mined by knowing the flow for (4.3). Thus, if we can determine a center manifold, the
problem will be solved. Generally, this is extremely difficult to do. We give an alterna-
tive procedure for determining the qualitative properties of the solutions of (4.2) which
is very close to the original method of Liapunov [1]. It uses only the bifurcation func-
tion obtained by an application of the method of Liapunov-Schmidt for the equilibrium
solutions of equation (4.2).

This method has other advantages over the use of the center manifold. The bifurca-
tion function has the same smoothness properties as the original vector field. This is not

4.3)

true of the local center manifold. It inherits the C¥ property for any finite k, but may not
be C™ (or analytic even) if the original vector fields are C™ (or analytic). For examples,
see Carr (1].

There is a neighborhood of (0, 0) € R x R” and a neighborhood of ¥ = 0 such that
the equation

4.4 Ap+ Yo(x, ¢) + Y(x, ¢) =0
has a unique solution ¢(x, Y) with ¢(0. 0) = 0. This function is C¥ in (x, ¥). Let

@“.s) Gix. X, ¥) = Xo(x, ¢(x. V)) + X(x, ¢(x, Y)).

We can now prove the following result.
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THEOREM 4.2. There are neighborhoods V, of x =0, V, of y =0, W, of X =0,
W, of Y = 0 and a C*-function ¢: V, x W, — V, such that the equilibrium points (x,. y,)
of (42)in V| x V, for (X, Y) € W, x W, are given by

(4.6) Glxp, X, Y)=0, y,=tx, Y)

where G is defined in (4.5). Fur‘hermore, the stability properties of the solution x, of the
scalar equation

4.7) x=G(x X, Y)

are the same as the stability properties of x, on a center manifold. Finally, any solution of
(4.2) which remains in the neighborhood V| x V, for t > 0 approaches an equilibrium
point of (4.2).

The function G(x, X, Y) is easier to compute than the vector field u(x, X, Y) on a
center manifold. The importance of the result is that the function G(x, X, Y), called the
bifurcation function, carries all of the information necessary to determine the stability
properties of the equilibrium points on the center manifold. The conclusion on stability in
Theorem 4.2 is due to deOliveira and Hale [1].

ProoOF OF THEOREM 4.2. It is clear that the equilibrium points of (4.2) are given by
(4.6). If u(x, X, Y) is the vector field on a center manifold, then u(x, X, Y)and G(x, X, Y)
have the same set of zeros in a neighborhood of zero. If x, is an isolated zero, let us first
prove that G, u have the same sign in a neighborhood of x,. Without loss in generality. we
can suppose x, = 0 and it is simple because we can make a small perturbation in X, Y to
attain this property. So, assume G(0, X, Y) = 0 = u(0, X, Y), 3G(0, X, Y)/ax > 0,

u(0, X, Y)/ox < 0. Now, consider the functions G(x, X + €, Y), u(x, X + ¢ Y)forea
small real number. Then one can show that

Gx, X+¢ Y)=Gx X, Y)+e,
u(x, X +¢ Y)=u(x, X, Y)+ 8(x, X, Y)e + o(iel)

as le| — O where 8(x, X, Y) > 0 for x in a neighborhood of zero. The assertion about G
is obvious, but the one about u is nontrivial and uses the properties of a center manifold.
Since the derivatives of G and u with respect to x at (0, 0, 0) have opposite sign, this shows
that a small perturbation of € gives rise to distinct zeros of G, u in a neighborhood of x =0.
However, this is a contradiction since G, u must always have the same set of zeros. Thus, if
Xq is an isolated zero of G, u, then the functions G, u have the same sign in a neighborhood
of zero. Thus, the stability properties as a solution of (4.7) and (4.3) are the same. If x,,
is not isolated, then one can easily discuss all the ways in which this can occur to complete
the discussion of the stability of x,.

If a positive orbit stays in ¥, x V,, then its w-limit set must be on the center mani-
fold and it must be a connected invariant set. Also, Lemma 4.1 implies that each equilib-
rium point has a stable manifold of codimension onc transverse to the center manifold. I
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the w-limit set contains two distinct points, then it must contain the arc between these
two points on the center manifold. If there are no equilibrium points between these two,
then the positive orbit must remain between the transverse stable manifolds above and go
back and forth along the arc as ¢ — oo, an obvious contradiction. The same type of
argument can be used even if there are any number of points in the arc. The theorem
is proved.

The proof of the last statement in the theorem can be modified foliowing Hale and
Massatt [1] to obtain the following result.

THEOREM 4.3. The w-limit set of a bounded orbit of the gradient system x = f(x),
J(x) = prad F(x) is a single point if, for every zero x, of f which belongs to a continuum
of zeros of f, the matrix 3f(x,)/dx is either nonsingular or has zero as a simple eigenvalue.

ProoF. We only indicate a proof. Details may be found in Hale and Massatt [1].
Differentiating F(x) along the solutions one sees that the -limit set of every solution must
belong to the set of equilibrium points. Since the -limit set is connected, it must contain
either a single equilibrium point or a continuum of such points. If x, belongs to a contin-
uum of the w-imit set, then the hypothesis on 3f(x,)/dx implies the existence of a smooth
center manifold through x, of dimension one. Thus, the w-imit set near x,, is a smooth
arc. Since it is compact, it must be an arc or a closed curve. But then one can use a gen-
eralization of Lemma 4.1 to show there is a tubular neighborhood of the w-limit set such
that any orbit which remains in this neighborhood for all 7 > 0 lies on a stable manifold
for an equilibrium point. This proves the result.

As a consequence of Theorem 4.2, we have

COROLLARY 4.4. An equilibrium solution (x4, yo) € V, x ¥V, of (4.2) for
X, Y) € W, x W, is asymptotically stable if and only if there is an € > 0 such that
Glxg + u, X, YJu <0 for 0 < |ul <e. It is unstable if and only if there is an € > 0 such
that G(xy + u, X, Y)Yu> 0 for either 0 <u < e or —¢ <u <0. If there is an ¢ > 0 such
that G(xy + u, X, Y) = 0 for 0 < |uj < e, then the solution is stable and there is a C* first
integral in a neighborhoad of (x4, y,). If the functions Xy, X, Y, Y are analytic (or c™)
then this first integral is analytic (or C*).

Proor. Everything is obvious except the existence of the first integral. Lemma 4.1
implies the existence of an n-dimensional C*stable manifold above each cquilibrium point
xq + u, Jul < e. These manifolds are analytic if the functions in (4.2) are analytic. Using
these stable manifolds, one can make a C* (or analytic) change of variables (x, y) = (v, w)
so that equation (4.2) in a neighborhood of (x,, y,) becomes v = 0, w = Aw + W(v, w).
This equaticn has a first integral W{v, w) = v. Thus, the original equation has a first integral
and the proof is complete.

COROLLARY 4.5. Suppose G(xq, X, Y) = 0and y, = ¢(x,. Y). ¢ satisfving (4.4).
If there is an integer q > 1 and a 8 # O such that

4.38) G(xo +u, X, Y)=pu? + o(lul) as (u| — 0,
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then the solution (x,, y,) of (4.2) is asymptotically stable if and only if § <0, q odd.
Otherwise, it is unstable.

We have also the following results of Liapunov [1] (see, also, Bibikov [1]).

COROLLARY 4.6. Suppose G(x,, X, Y) =0, y, = ¢(x,, Y), ¢ satisfying (4.4) and
Xo. X, Yy, Y are analytic. Then either there are an integer q > 1 and a § # O such that
(4.8) is satisfied with the stability properties as stated in Corollary 4.5 or (x,, y,) is a stable
solution of (4.2) and there is an analytic first integral.

ProoF. Since G(x, X, Y) is analytic, only the two cases mentioned can occur.

COROLLARY 4.7. If there is a scalar function H(x, y, z) continuous for (x, y, z) €
R x R" x R” such that H(x, y, 0) = 0 and

Xo(x, ¥) + X(x, y) = Hix, y, Ay + Yy(x, y) + Y(x, y))

then the zero solution of (4.2) is stable and there is a first integral.

ProOF. The hypothesis implies G(x, X, Y¥) = 0 for x in a neighborhood of X = 0.

Let us now turn to the problem of bifurcation of the equilibrium point (0, 0) treating
X, Y in (4.2) as parameters. An equilibrium point (xq, v,) of (4.2) is called a saddle-node
if xy as a solution of (4.7) or (4.3} is asymptotically stable from one side and unstable from
the other. The following result is contained in Andronov et al. [1], Sotomayor {1].

THEOREM 4.8. Suppose k = 2 and there is a f # 0 such that
4.9) G(x, 0,0) = px? + o(Ix|?) as |x] — 0.

Then there is a neighborhood V of (x, y) = (0, 0), a neighborhood W of (X, Y) =0 and a
C*-function y: W — R such that the following conclusions hold:

(i) Y(X, Y) > 0 implies there are no equilibrium points of (4.2) in V.

(ii) ¥(X, Y) = 0 implies there is one equilibrium point of (4.2) in V which is a saddle-
node.

(iii) ¥(X, Y) <O implies there are two equilibrium points of (4.2) in V, one is a hy-
perbolic saddle and the other is hyperbolic and asymptotically stable.

Furthermore, the set T' = {(X, Y): ¥(X, Y) = O} is a submanifold of codimension 1
in W (see Figure 2).

rroo¥. The function G(x, X, Y) satisfies 3G(0, 0, 0)/ax = 0, 32G(0, 0, 0)/ax? =
28 # 0. Thus, there are a neighborhood W of (X, Y) = (0, 0) and a neighborhood V, of
x = 0 such that the equation 3G(x, X, Y)/dx = 0 has a unique solution x*(X, Y) with
x*0,0)=0. If (X, Y) = (sgn B)G(x*(X, Y), X, Y), then the conclusion of the first part
of the theorem follows from Theorem 4.2.

To prove the last part of the theorem, consider the special case where X(x, v) = A,
Y(x, y) = O for all x, y where X is a real scalar and show that D\ y(X\, 0) #0 for A = 0.
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FIGURE 2. FIGURE 3.
G(x, 0, 0) = fx* + of|x]?). G(x,0,0) = gx> + o(Ix]?).
To discuss a higher order bifurcation, suppose that k > 3 and
4.10) G(x, 0,0) = fx> + o(Ix|%) as |x| — 0, §#0.

The argument below follows Chow, Hale and Mallet-Paret [1] and Vanderbauwhede [1].
Then there are a neighborhood V, of x = 0 and a neighborhood W of (X, Y) = (0, 0) such
that the equation 3*G(x, X, Y)/dx? = 0 has a unique solution x{(X, Y) with x*(0.0) = 0.
Let

AGHX, Y), X, V)
@.11) y, (X, Y) = = .

If we apply the same argument as in the proof of Theorem 4.8, then for (X, Y) € W, the
equation 9G(x, X, Y)/ax has no solution in V, if fv,(X, Y) > 0, one solution if v,(X, Y)
= 0 and two simple solutions if By, (X, ¥) <0.

If By, (X, Y) > 0, then G(x, X, Y) is strictly increasing and has exactly one solution
inV,. fy,(X, Y)=0,let x;(X, Y) be the unique solution of 3G(x, X, Y)/ax = 0 in V|
and define

4.12) 7,(X, Y) = G(x(X, Y), X, Y).

If 7,(X, Y) = 0, v,(X, Y) = 0. then the unique solution of G(x, X, ¥Y)=01in V| is a tri-
pie zero. If either By, (X, Y) > 0 or v,(X, Y) = 0, 7,(X, Y) # 0, then this unique solution
is simple.

Now suppose fy,(X, ¥) <0. Then there are two simple solutions of 3G(x, X, Y)/ax
=0in V,. Again using the argument of the proof of Theorem 4.8, one can show that they
have the form

x2=x}X, )+ o XX, Y. v, (X, V)(-By, (X, Y)'/?

where (X, Y, 0) = £371/2 (see Vanderbauwhede [1] for details).
If

4.13) X, Y)=G(x¥XX, Y). X, Y)G(x*X, V). X, Y)

then, using Theorem 4.2, we can state the following theorem.
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TueOREM 4.9. Suppose G(x, 0, 0) satisfies (4.10), the regions V,, W and functions
Yy Y on W are defined as above. Then the following conclusions hold:

(i) If either By (X, Y) = 0 or By, (X, Y) <0 and (X, Y) > 0, then equation (4.6)
has one zero in V and equation (4.2) has exactly one equilibrium point in a neighborhood
of zero which is asymptotically stable if 8 < 0 and unstable if § > 0.

(i) If By,(X, Y) <O and «(X, Y) = 0, then equation (4.6) has two zeros and equa-
tion (4.2) has two equilibrium points in a neighborhood of zero, one being a saddle-node
and the other hyperbolic. The hyperbolic one is asymptotically stable if § < 0 and a saddle
point of order one if § > 0.

(iii) If 8y, (X, Y) <0 and (X, Y) <0, there are three simple solutions of equation
(4.6) and equation (4.2) has three equilibrium points in a neighborhood of zero, all hyper-
bolic, two saddles of order one if § > 0 and one saddle of order one if B < 0, the others
being asymptotically stable.

In the above theorem, the set I' = {(X, ¥): vy, (X, Y) <0, y(X, Y) = 0} is the bi-
furcation set in W; that is, the set where the number of equilibrium points of (4.2) changes
from one to three and where the topological structure of the trajectories of (4.2) changes in
a neighborhood of zero.

It is possible to show that there are positive nonzero functions o, , g_ on W such that
saying that (X, Y) € T implies either

12X, ¥Y) = 0, (X, Y)(~Br,(X, Y))*/2
or

7, (X, ¥) = —o_(X, V)(=By,(X, ¥))}/?

where v, is defined in (4.12). This shows that the set I is like a cusp surface in W as in
Figure 3 (see Vanderbauwhede [1] for details).

With G satisfying (4.9), Theorem 4.8 implies the complete behavior of the solutions
of (4.2) in a neighborhood of zero is characterized by one function of X, Y. If G satisfies
(4.10), then two functions were needed to obtain this characterization. If the degeneracy of
G(x, X, Y)at (X, Y) = (0, 0) is higher order, then it becomes extremely difficult to give an
explicit description of how the structure of the zeros depends on X, Y. This is due to the
fact that it is always difficult to discuss the zeros of polynomials of degree greater than three.

Singularity theory can be used to say that the problem actually is reducible to the dis-
cussion of a polynomial. If we suppose all functions in (4.2) are C™, then G(x, X, Y) is
Cinx, X, Y. If

(4.14) G(x,0,0) = px9 + o(lx|?*") as|x] — 0, §#0,

then the Banach space version of the Malgrange Preparation Theorem due to Michor [1] im-
plies there are a polynomial Ax, X, Y), P(x, 0,0) = x9 of degree g in x, and a positive
function F(x, X, Y). E(x, 0. 0) = 1, such that

(4.15) Gix, X, Y)= E(x, X, )Px, X, ¥V)
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and these functions are C* in x, X, Y. Thus the zeros of G(x, X, Y) as well as the signs
between zeros coincide with those of Ax, X, Y). Thus, we can state an analogue of Theo-
rem 4.2 in the following way. The equilibrium points of (4.2) are given by

(4.16) Axy. X, Y)=0, y=0¢(xq Y)

and the stability properties of the equilibrium points are determined by the stability proper-
ties of the equilibrium point x,, of the scalar equation

4.17) x=Ax X, Y).

Such a result could not be obtained by reducing the discussion of (4.2) to the center
manifold (4.3) and then applying the Malgrange theorem. The reason is that the center
manifold is not necessarily C™ (see Carr [1]).

For the special case ¢ = 2, one can take P(x, X, Y) = x> + ¥(X, Y) where v is the
function in Theorem 4.9. For g = 3, one can take P(x, X, ¥) = x> + v,(X, Y)x +
75(X, Y) where 7, is essentially the same function as v, in (4.12).

In the applications, one frequently encounters the situation where the perturbed vec-
tor field (X, Y) is not an arbitrary function in a neighborhood of zero, but belongs to a
prescribed k parameter family of vector fields X(x, y, A), Y(x, y, A), XA € R¥, which vanish
for A = 0. The bifurcation function is then a function of A, G = G(x, A\). The number of
equilibrium points and their stability properties are determined by the manner in which the
k parameter family of vector fields crosses the bifurcation surfaces obtained from taking
arbitrary perturbations X, Y. Of course, it is clear that the sam2 conclusions will prevail if
the original problem is phrased in terms of the restricted family depending on A. This latter
method is often more transparent.

As a final remark, it is possible to extend everything above to the case where the
eigenvalues of 4 in equation (4.1) have nonzero real parts.




§. Stability and bifurcation from a focus

In this section, we discuss bifurcation from an equilibrium point in the spirit of the
previous section except under the hypothesis that the linear approximation of the vector
field has two purely imaginary roots and the remaining ones have negative real parts.

The unperturbed equation is given as

5.1) x=Bx+ Xolx,y), y=Ay+ Yyx

A is an n x n matrix whose eigenvalues have negative real parts, X, € C*(R? x R", Rz).
Y, € CK(R? x R™, R"), k > 1, are functions vanishing together with their first derivatives

where

atx=0,y=0.
For a given neighborhood U of x = 0.y = 0 and X € C*(U, R?), Y € C*(U, R"),

the perturbed equation is
52) x=Bx+ Xp(x, v) + X(x,y), y=Ay+ Yo(x, v} + Kx, y).

For (X, Y) in a sufficiently small neighborhood of (0, 0), equation (5.2) has a unique
equilibrium puint x = o X, Y). y = B(X., Y) in a neighborhood of x =0,y = 0,a(0,0) = 0,
8(0.0) = 0. The functions a, § are C*.functions of X, Y. By a translation of variables, we
can therefore assume that this cquilibrium point is zero. Thus, we will assume without loss

of generality that i
(5.3) X(0.0)=0, Y(0,0)=0. |

Our objective is to study how the stability properties of the unperturbed equation
(5.1) are determined by the nonlinearities X, Y,,. Also, we determine the number and
stability properties of the periodic orbits that can bifurcate from zero as the perturbation
terms X, Y are varied in a neighborhood of zero. The existence and the number of periodic ]
solutions follow from the bifurcation function abtained by an application of the method of
Liapunov-Schmidt. We prove that this bifurcation function also carries the information on
the stability of periodic orbits. The proof of this latter fact uses the center manifold

theorem.
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LeMMA S.1. There are a neighborhood V of (x, y) = (0. 0) and a neighborhood
Wof (X, Y) = (0, 0) such thas, for (X, Y) € W and any periodic orbit v = WX, Y) of
(5.2) in V, the stable manifold has dimension = n + 1. Furthermore, there is an (n + 1)-
dimensional manifold S(y, X, Y') (either a generalized Mobius band or the cross-product
of a circle and an n-dimensional ball) containing <y such that v is exponentially asymptot-
ically orbitally stable with asymptotic phase relative to initial values in Sy, X, Y). Fur-
thermore, S(v, X, Y) is C* in X, Y and is diffeomorphic to the local stable manifold
for any periodic orbit of the linear equation x = Bx, y = Ay.

The proof of this result may be supplied by using the ideas for the construction of
stable manifolds near periodic orbits in Coddington and Levinson [1], Hale [1] (see. also,
Fenichel [1]).

The manifold S(y, X, Y) in Lemma 5.1 has codimension one. Thus, the complete be-
havior of the solutions near a periodic orbit is determined by what happens in one other
direction. An analysis of the Poincaré map on a center manifold will take care of this direc-
tion.

There is a center manifold for equaiton (5.2) which is C¥ in (x, X, Y) in a sufficiently
small neighborhood ¥ of (x, y) = (0, 0) and a neighborhood W of (X, ¥) = (0.0). Ifa
center manifold is given by S = {(x, ¥): ¥y = ¥(x, X, Y)} then the flow on the center mani-
fold S is given by

x=Bx+ ?(x),

(54) ~
X(x) = Xo(x, ¥(x, X, Y)) + X(x, Y(x, X, Y)).

If v is a periodic orbit of (5.2), then y belongs to S and conversely. Thus, the periodic
orbits of (5.2) can be determined by discussing the periodic orbits of (5.4). Also. from
Lemma 5.1, the stability properties of a periodic orbit of (5.2) are completely determined
by the stability properties of the corresponding periodic orbit of (5.4).

By the manner in which a center manifold is constructed. one can also obtain a priori
bounds on ¢. In fact, for any € > 0, 8§ > 0, there is a constant K = K{(e, 8) such that. if
» = y¥(x, X, Y)is a center manifold of (5.2) for |x] < €, (X, Y) in a 3-neighborhood of
zero, then

(5.5) (x, X, V)i < Kix|.

Also, K(¢e, 8) — 0 as (¢, 8) — (0, 0). Thus, in a neighborhood of (x, ) = 0, (X, Y) =0,
every periodic orbit of (5.2) must have the y coordinate satisfying (5.5). For x = (x,, x,),
this justifies the transformation of variables

(5.6) x, =ucosd, x,=-usinb, y=w

in (5.2). The new equations for (8. u, v) are
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6=1-(Xsin6 +72c0s0)/ud=-°-' 1+60,uv X Y),

7 =X cos6-X,sin 0,
v=Av+ ?/u—(i, cos 0 —7zsin Ojvfu

where X = (X"l, i"z), X= Xy + X, Y= Y, + Y and all functions are evaluated at (1 cos 0.
—u sin 8, uv).

Since the function © satisfies &(8, 0, v, 0, 0) = 0, it follows that 6>%forvina
fixed compact set and (u, X, Y) in a sufficiently small neighborhood of (0, 0, 0). Thus, we
may replace ¢ by & to obtain

(5.8) dufd§ = f(6, u, v, X, Y), du/d = Av + g6, u, v, X, Y).
The functions f, g are 2n-periodic in 6 and
(59) f(6.0.v, X, V)=0, 3(6,0,v,0,0)/3u =0, g®6,0,v,00)=0.

Any 2n-periodic solution of equation (5.8) corresponds to a periodic orbit of (5.2)
through the transformation (5.6) and conversely.

For equation (5.8), there is the standard procedure of alternative problems or Liapunov-
Schmidt for determining the 2n-periodic solutions for (u, X, Y') in a neighborhood of zero
and v in a compact set (see Cesari {1} for a general discussion of the alternative method as
well as references). To describe the method, let P,, = {w: R — R™"*1, 2n-periodic, con-
tinuous} with the supremum topology and, for € > 0, let W(e) be the e-neighborhood of
(X, Y) = 0. For a € R fixed, consider the equation, for (u. v) € P,

d fz'u(s)ds =g,

2nJo
(5.10) W 116, w0, X, ¥) ~ 5= [0 fls, uls), o), X, V)
Z—; =Buv+g0 uuv X Y)

An application of the Implicit Function Theorem shows there are an € > 0 and a
unique C*-function (u(-,a, X, Y), (-, e X, Y) € P, . for lal < €. (X, Y) € W(e), vanishing
for (a, X, Y) = (0, 0, 0) and satisfying (5.10). If we define

5.11) Gla, X, Y) = ;—"f:"f(& u(s,a, X, Y),us, a, X, Y), X, V)ds
then the above 2n-periodic function will satisfy (5.8) if and only if
(5.12) G(a, X, Y)=0.

It is also easy to show that every 2m-periodic solution of (5.8) for («, X, Y) in a neighbot-
hood of zero and v in a compact set can be obtained through this process.
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The function G(a, X, Y) is called the bifurcation function and equation (5.12) is called
the bifurcation equation.

We can now prove the following result. The conclusions on stability are due to deOli-
veira and Hale [1].

THEOREM 5.2. There are a neighborhood U of zero in Py, an ¢ > 0 and Ck-functions
u: R x V(e) x W(e) — R,
v: R x V(e) x We) — R,
G: V(e) x W(e) — R,

We€) = (—¢, €), We) the e-neighborhood of (X, Y) = (0,0).(u(-, a. X, Y), v(-, a, X, Y))

€ P,,, such that equation (5.8) has a 2n-periodic solution (u(0), v(0)) in U if and only if
(1(8), 1(8)) = (u(6, a, X, Y), A6, a, X, Y)) and a satisfies (5.12). Furthermore, the stability
properties of a 2n-periodic solution (6. ay, X, Y). 0. ay. X. Y) coincide with the stability
properties of a, as a solution of the scalar cquation

(5.13) a=Ga X, Y).

In particular, u(8, a, X, Y), W0, a, X, Y) is stable (asymptrotically stable) (unstable) if and
only if ay is stable (asymptotically stable) (unstable).

Proo¥. We only outline the proof of stability. The details can be found in deOliveira
and Hale [1] or Hale [2]. The theorem is first proved for the variable v absent; that is, a
scalar equation

(5.14) dufdd = f(0. u, X, Y).

Let %, a, X, Y), 6(11, X, Y) be the 2n-periodic function and bifurcation function construc-
ted for this equation by the alternative method. Then 31(0, a, X, ¥)/3a = 1 at a = 0,

(X, Y) = (0. 0) and one can make the transformation of variables w + b, @ = (8, b, X, Y)
to obtain

- {ame. 5 x. V)| A _
b—[ 5 ] Gib, X, 1).

Since 3%/ab > 0 if b, X are small, one obtains the result for v absent. When v is present.
there is a center manifold with the flow on the center manifold given by an equation of the
form (5.14). One now has two bifurcation functions 5((1. X, Y)and G(a, X, Y) correspond-
ing respectively to (5.14) and (5.8). These functions must have the same zeros and one can
use an argument similar to the one in the proof of Theorem 4.2.

Theorem 5.2 has obvious interpretations about the existence and stability of periodic
orbits of (5.2). Using the same type of argument that was used in the proof of Theorem 4.2,
one can also show that the w-limit set of an orbit in a neighborhood of zero consists of
either zero or a single periodic orbit. These results are summarized in
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THEOREM 5.3. Let u(8,a, X, Y), U0, a, X, Y) be the 2a-periodic functions satis-
fying (5.10) and let G(a, X, Y) be defined in (5.11). Then there are a neighborhood V of
(x, ¥) = (0, 0) and a neighborhood W of (X, Y) = (0, 0) such that equation (5.2) for (X, Y)
in W has a periodic solution (x(1), y(t)) in V if and only if

x(f) = (u(8(t), ag, X, Y)cos 8(t), —u(8(), ay, X, ¥)sin 6(2)),
() = u(@(), a5, X, YIU0(2), gy, X, ¥)

where G(ag, X, Y)=0,6() = | + 69, ag, X, Y), u(08, ao, X, Y)) and 6(0), a, are uniquely
determined by x(0), y(0). The stability properties of the periodic orbit coincide with the
stability properties of a, as a solution of (5.13). Finally, the «-limit set of an orbit of
(5.2) in V is a single periodic orbit.

One can show (see, for example, Chafee [1}) that

(5.15) G@ X, Y)=-G(-a, X, Y).

Thus, if g is a solution of G(a, X, Y) = 0, then so0 is ~a. One shows that these two solu-
tions will correspond to the same periodic orbit of (5.2). Thus, we only need to be con-
cerned with positive roots of G(a, X, Y) = 0.

Using this fact, Theorem 5.2 and the ideas of the proof of Corollary 4.4, one obtains
the following interesting consequence for the stability of the zero solution of the unper-
turbed equation (5.1).

COROLLARY 5.4. The zero solution of (5.1) is asymptotically stable (unstable) if and
only if there is an € > 0 such that aG(a, 0,0) <0 (> 0) for £ < |a) <e. Thereisane>0
such that G(a, 0, 0) = 0 for |a| < € if and only if the zerc solution is stable and there is a
first integral in a neighborhood of zero.

This corollary was first proved by Liapunov [1] (see also Bibikov [1]) for the case
when X, Y, are analytic. In particular, Corollary 5.4 implies that, if

(5.16) G(a,0,0) = gya®?*" + o(la??*') aslal — 0, B, #0,

then the zero solution of (5.1) is asymptotically stable if B, <0 and unstable if 8, > 0. By
using the theory of normal forms for equation (5.1) (see, for example, Bibikov [1}] or
Takens [1]) one can relate the sign of §, to the stability of equation (5.1) under certain
types of high order perturbation (for details, see Negrini and Salvadoti {1}, Bernfeld and
Salvadori (1]).

For k 2 2q + 1, we now discuss equation (5.2) with G(a, 0, 0) satisfying (5.16). There
are functions a;: w—R, a’(O, 0)=0,0<<q~1, aq(O. 0) = B, such that

(5.17) Ga X, )= f afX, Y)a¥'*! + of(a29 )
j=0
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as |la) — 0. Let

M= {(X, Y ap(X, Y) =0}, T' = {(X, V) ap(X, ¥) >0},

(5.18)
I~ = {(X Y)ayX, ¥) <0}

All of the coefficients a,(X, Y) can be computed in terms of the derivatives of X, Y of or-
der < 2j + 1. For the matrix of the linear approximation of (5.2) at zero, the function
ag(X, Y) represents the real parts of the eigenvalues which are purely imaginary for (X, ¥)
= (0, 0). Thus, in order to have a periodic orbit bifurcate from zero by a variation it
(7. Y) near some point (;\7, 7), the point X ?") must have ao(Y, Y) = 0: that is (X,
belongs to M.

~
4

Y)

For some special types of one parameter families of vector fields, the bifurcation at
(Xg. Yg) is very simple as shown in the following result, essentially due to Negrini and Sal-
vadore [1].

THEOREM 5.5. Suppose G(a, 0, 0) satisfics (5.16). (X(u). Y()). 4 € R, is a C'-family

of vector fields, vanishing at u = 0, and suppose the functions cr/.(X(u). Y(u)) def au) are
defined in (5.17). If a(',(O) # 0, then there are a neighborhood V of (x, v) = (0,0)and a
Mo > O such that, if 0 < |ul < u,, then equation (4.2) has a periodic orbit in V if and only
if :;v(',(O),(i0 < 0. When this condition is satisfied the orbit is unique. It is asvmptotically
stable if B, <O and unstable if f, > 0.

Proo¥r. The bifurcation function G(a, X(u). Y(u)) = G(a, p) satisfies

g ,
G W= Y ai(u)az’“ +o(ia?9*Yy aclal —0
=0

where a,.(O) =0,0<j<qg, aq(O) =B, # 0. It is not difficult to show that there is a neigh-

borhood U of (a, u) = (0, 0) such that any solution of G(a, u) = 0 in U has the a priori
bound lal < klu|'/29. 1f we let @ = |ul' /295, then

def 4 -
Ilm(G(Iul'“qb. W= Fb,w = 3 vwe* !+ oud
j=o

as lul — 0, where 74(0) = a4(0), 7;(0) = 0,0 <j < q. 7,(0) = o # 0. The Implicit
Function Theorem implies the result stated in the theorem on existence. The stability fol-
lows from Theorem S5.2.

Theorem 5.5 says that nothing very complicated can occur from variations in a one
parameter family of vector fields regardless of the degeneracy in G(a. 0. 0) provided that the

eigenvalues cross the imaginary axis with a definite speed; that is, ag(u) = a(',(om + o(|ul)
asu — 0, a(',(O) # 0. It is only possible to obtain one periodic orbit and the amplitude of
the orbit (from the proof) is of order {ul' /29 as ul — 0.

Theorem 5.5 does not imply that there is at most one periodic orbit of (5.2) for every
(X. Y) in a neighborhood of (0, G). 1. fact, if ¢ > 1. we will see later that there will always
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be some (X, Y) in any neighborhood of zero such that there are ¢ periodic orbits. Assum-
ing one parameter families of perturbations in (5.2), Flockerzi [1] has used Newton's poly-
gon to determine the number of solutions of G(a, u) = 0 and their stability when ag{u) =
aop" + o(lu}*) as {u) — 0. We obtain results for arbitrary perturbations (X, ) which are
more in the spirit of Chafee {1].

The first result for ¢ = | is referred to as the generic Hopf Bifurcation Theorem.

THEOREM 5.6. Suppose
G(a, 0,0) = oa’ + o(ial®) as (a] — 0, g, # 0,

and ay(X, Y) is defined in (5.17). Then there are neighborhoods W of (X, Y) = (0,0), V
of (x, y) = (0, 0) such that for (X, Y) in W, equation (5.2) has a periodic orbit in V if and
only if ag(X, Y)B, < 0. When this condition is satisfied, the orbit is unique and is asymp-
totically stable (unstable) if and only if 8, <0 (> 0).

Proo¥F. In a neighborhood of zero, G(x, X, Y) = 0 either has one positive root or
no positive root. The condition for the existence of one is ay(X, Y)8, < 0. The stability
of the orbit follows from Theorem 5.2.

With the notation as in (5.18), if (X, Y) € I'* (X, Y), then a periodic orbit can exist
for (X, Y)in I'*(X, Y) if and only if 8o <0 and then it is asymptotically stable (the super-
critical case) with the origin being unstable. It can exist for (X, Y) € ' if and only if
8, > 0 and then it is unstable (the subcritical case) with the origin being stable.

Suppose there is a one parameter family of perturbations X(2), Y()), A € R, which
vanish for A = 0 and this curve of perturbations has (X(A), Y(A\)) in '™ for —e <A < 0 and
in '* for 0 < X <e. Then the origin is asymptotically stable for A < 0 and unstable for
A > 0. There are an unstable periodic orbit and subcritical bifurcation at A = 0 if 8, > 0
and an asymptotically stable periodic orbit and supercritical bifurcation at A = 0 if g, < 0.
Notice that it is not required that the curve cross I'® transversally; that is, the eigenvalues of
the linear part of (5.2) cross the imaginary axis with a definite speed. Contrast this with
Theorem 5.5.

If the first, second and third derivatives of G(a, 0, 0) vanish at @ = 0, Theorem 5.6
cannot be used. The discussion of the case of higher order degeneracy of G(a, 0. G) is much
more complicated and one is forced to use the Malgrange Preparation Theorem on Gla, X, ¥)
for the general case as we did in §4. There are some more specific results presented below
that can be obtained without this theorem; namely the case ¢ = 2 in (5.16).

Suppose ¢ = 2 in (5.16) and define I'®, I'*, I' ™ by (5.18). If ag(X. Y)B, < 0. then
ag(X, Y)ay(X, Y) <0 for (X, Y) in a neighborhood of zero and G(a, X, Y) has exactly
one positive zero. Thus, equation (5.2) has exactly one periodic orbit. If ag(X, Y)3, = 0.
there may be more than one positive zero of G(a, X, Y). To determine conditions for when
there are more than one, define Ar, X, Y), r 2 0, by the relation

(5.19) G, X, Y)=aP@* X, Y).




28 JACK K. HALE

Extend P(r, X, Y) as an even function for 7 € R. Then the positive zeros of G are deter-
mined from the positive zeros of Ar, X, Y). Since g, # 0, the Implicit Function Theorem
implies there are neighborhoods ¥ of r = 0, W of (X, Y) = 0 and a unique function §:

W — R* such that 5(0,0) = 0 and aA(5(X, ), X, Y)/ar =0. Let

(5.20) X, Y)=P5(X Y), X Y)

If Y(X, Y)B, <0, there are two positive simple zeros of Az, X, Y) and thus two periodic
orbits of equation (5.2). The orbit corresponding to the smaller zero is unstable (asymptot-
ically stable) if 8, <0 (> 0) and the other is asymptotically stable (unstable). If v(X, Y)g,
= 0, §(X, Y) > 0, then there is a unique periodic orbit which on a center manifold is stable
on one side and unstable on the other. If ¥(X, Y)B, > 0, there is no positive zero of
Ar, X, Y) and, thus, no periodic orbit of (5.2). These results are summarized in

THEOREM 5.7. Suppose
Gla, 0,0) = §ya° + o(lal®) as lal — 0, §, # 0,

oo(X, Y) is defined in (5.17) and ¥(X, Y) is defined by (5.20) when ay(X, Y)By = 0. Then
there are neighborhoods W of (X, Y) = (0, 0), V of (x, ¥) = (0. 0) such that, for (X, Y)E W,
equation (5.2) satisfies the following properties in V:

() ay(X, Y)B, <O implies a unique periodic orbit which is asymptotically stable
(unstable) if B, <0 (> 0).

(ii) ao(X, Y)By =0, v(X, Y)B, <O implies there are two periodic orbits, the one
corresponding to the smaller value of a is unstable (asymptotically stable) with the other
one being asymptotically stable (unstable) if g, <0 (> 0).

(i) ay(X, V)8, €0, v(X, Y) =0, 8(X, Y) > 0 implies there is a unique periodic
orbit which on a center manifold is stable on one side and unstable on the other.

(iv) ag(X. Y)By =0, (X, Y8, > 0 implies no periodic orbit.

Ifwelet £ = {(X, Y): (X, Y) = 0}, £ has codimension 1 and is tangent to I at
(0. 0). Define I"® as in (5.18). Then Theorem 5.7 states that the bifurcation set for equa-
tion (5.2) for ¢ = 2 in (5.16) is given by I'® U . The neighborhood W is divided into the
components shown in Figure 4 with the number of periodic orbits indicated. The set 't is
drawn to the right of I'® and the intersection of '?, ¥ contains the point (X, Y) = (0, 0).

0 0
2 r T 2

/

FIGUuRE 4a. 8, <0. FiGurr 4b. §, > 0.
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From these pictures, one can see clearly the meaning of Theorem 5.7 for ¢ = 2. Any
curve of perturbations (X(u), Y(u)) crossing I transversally, that is, I''(0) # 0, can never
enter the region containing two orbits. [f the curve is not transversal to 10, it is possible
for it to enter this region. As remarked earlier, this type of problem with one parameter
problems was discussed by Flockerzi [1].

There remains the problem of computing the number 8, in (5.16) and the functions
al.(X, Y)in (5.17). One method is to approximate the Taylor series in a for the functions
wa, X, Y) vla, X, Y), Ga, X, Y) directly from the defining equations (5.10), (5.11). An
alternative procedure is to transform the vector field (5.2) by a change of coordinates to a
convenient normal form. The method of Lie transforms developed originally for applica-
tions to celestial mechanics is very convenient for obtaining this normal form. The best ref-
erence is Henrard [1]. This method also is presented in the forthcoming book of Chow and
Hale [1]. 1t leads naturally to implementation on the computer (see Meyer and Schmidt [1])
and could lead to considerable improvement over the present methods used for the computu-
tion of periodic orbits.

Using the same ideas, the appropriate extensions of the results to the case where A4
has eigenvalues with nonzero real parts are only a technicality.

In the applications. it often happens that the perturbed vector field depends in a spe-
cial way on a finite number of parameters varying in a neighborhood of zero. The bifurca-
tion diagrams in the parameter space are then obtained by studying the way mm which the
family of vector ficlds crosses the general bifurcation curves given above. For example. it
there is a single parameter u and the lowest order terms in the biturcation function are
Ba® + ¥\ with B # 0, y # 0, then this is the case of generic Hopf bifurcation, and the de-
pendence on A through the linear term X implies there is only one crossing of the biturca-
tion curve as we noted before. When there are several parameters in the generic Hopt hifur-
cation problem, then the family of vector fields can cross several times and i a very com-
plicated manner. The case where the degeneracy in @ is of order S (g = 2 in (5.16)) is even
more difficult. Also, it is often the case that one parameter, say u. plays a distinguished
role (sometimes called a modal parameter) and one is interested in studying the bifurcations
when this parameter is fixed and the other parameters are varied. This question has been
discussed in detail for third order and fifth order degeneracy by Golubitsky and Langford |1).




6. First order bifurcation in the plane

Suppose £ C R? is open and let X% = X4({2) be the set of C"(&, R?) vector fields.
r > 1, which are transverse to the boundary of Q. The set Z) of structurally stable vector
fields in X is characterized in Theorem 3.2 and X, is open and dense in X%. Any f€ X}
which is not structuraily stable is a bifurcation point. Our objective in this section is to dis-
cuss some of the most elementary bifurcation points.

Following Andronov and Leontovich [1] (see also Andronov et al. [1]) except for
terminology, we say f € X% is a bifurcation point of degree 0 if it is structurally stable. It
is a bifurcation point of degree 1 if it is not of degree zero and every g in a neighborhood
of fis either of degree zero or equivalent to f. It is a bifurcation point of degree 2 if it is
not of degree 0 or [ and every g in a neighborhood of f is either of degree 0 or 1 or equiva-
lent to £ Similarly, one defines a bifurcation point of degree k.

The bifurcation points of degree one are the simplest types that can occur. They cor-
respond to those vector fields which satisfy all of the conditions for structural stability ex-
cept one and the condition that is violated must be done so in the simplest way. To be
more specific, suppose an equilibrium point x, = 0 of fis not hyperbolic. This can occur
only when A = 8f(0)/dx has an eigenvalue on the imaginary axis. Now consider all g near
£ which have an equilibrium point near zero which is not hyperbolic. In order for all such
£ to be equivalent to f, it is necessary that A has either a simple zero or a pair of simple
purely imaginary eigenvalues. If 4 has a simple zero and f has degree 1 in X5, r > 2. then
the bifurcation function G(g, f) in §4 for equilibrium points near x, = 0 must have the
form G(a, f) = {ioa2 + o(lal) as |a| — 0, B, # 0, and Theorem 4.8 is applicable. There
are a neighborhood W of f and a submanifold I" of codimension one such that W\[" =
U, U U, where g € U, implies no equilibrium point near x,. g € U, implies a saddle and
hyperbolic node near x, and g € I" implies a saddle-node near x,, which we call an elemen-
tary saddle-node.

If A has a pair of purely imaginary roots and f has degree 1 in X', r > 3, then the
bifurcation function G(a, f) in §5 for the existence of periodic orbits near x, must have
the form

G, f) = Boa® + o(lal®) as lal — 0, o # 0.

This corresponds to the generic Hopf bifurcation (Theorem 5.6). There are a neighborhood
W of f and a submanifold I" of codimension one such that W\I' = U, U U, and g € U,
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implies no periodic orbit near x, and g € U, implies a unique periodic orbit near x,. We
refer to the equilibrium point of g near x,, as an elementary focus if g € T.

The condition { r f to be a bifurcation point also can occur when a periodic orbit y
becomes not hyperbolic. Let ¥ = {¢(z, p). t € R} where ¢{t, p), ¢(0, p) = p, is a periodic
solution of ¥ = f(x). Let L, be a transversal to y at p and m: Ly, — L, be the Poincaré
map. Then 7(p) = p and not hyperbolic implies #'(p) = 1. 1f f has degree one in X5,

r > 2, then it must necessarily be true that n”(p) # 0. This means that n(p + u) - (p + u)
in a neighborhood of u = 0 behaves like a quadratic function in u. Then there will be a
neighborhood W of f and a submanifold I' of codimension one such that WAI' = U, U U,
and g € U, implies no periodic orbits near ¥ (no fixed points of 7 near p) and g € U, im-
plies two hyperbolic periodic orbits near ¥ (two fixed points of m near p), one unstable and
the other asymptotically stable. If g € I', then there is a unique periodic orbit near 7, stable
on one side and unstable on the other. Having g € T" is equivalent to having a double zero
of M p + u) — (p + u) near u = 0. This result on periodic orbits can also be obtained from
the method in §4 by introducing a local coordinate system x +— (8, p), x = ¢{0, p) + puv(6),
where v(f) is a unit vector orthogonal to a¢(0, p)/30. If t is replaced by 6 in the new equa-
tions, one obtains a scalar equation for p as a periodic function of 8, a special case of equa-
tion (5.8). Theorem 5.2 is then applicable.

If the equilibrium points and periodic orbits are hyperbolic and f is a bifurcation point,
then there must be a trajectory connecting saddle points. However, if f has degree one, then
one can show that there must be an orbit whose a- and «w-limit sets are the same point—a
homoclinic orbit. This situation is more complicated to understand than the previous ones
because it is a global problem for which the discussion cannot be restricted to the considera-
tion of only the fixed points of a map.

To describe the behavior near a homoclinic orbit, suppose zero is a saddle point of f,
f(0) = 0, 9f(0)/ax has eigenvalues A <0 < pu. If W§, W}‘ are the stable and unstable mani-
folds of O, then there is a homoclinic orbit through zero if and only if (W} N W; O} # &.
If py € W} N W'f‘, Po # 0, then the orbit O(p,) through p, approaches zero exponentially
ast — too. If y = O(py) U {0}, then the invariant set y can have either of the configura-
tions shown in Figure S with respect to the position of the stable and unstable manifolds of
zero. In order to be specific, we suppose the situation in Figure 5a occurs. The other case
is discussed in a similar way.

FIGURE 5a. Ficure 5b.
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Let L, be a transversal to v at py. Let Ly (Lg) be that part of Ly interior (exterior)
to v in Figure 6. There is a neighborhood U of p, such that, for any p € U N L, there
isar=1(p)>0 with x((p), P) E L}, x(t. p) € L, 0 <t < 1(p), where x(¢, p) is the
solution of * = f{x) through p. If m,(p) = x(7(p), p), then, for any integer X, positive or
negative, one can define ﬂf,( p) on some subset of L; depending on k. The map , is like
a Poincaré map relative to the interior of v. It is not defined at p, and 7(p) — = uas p — p,.

AS

FIGURE 6.

DEFINITION 6.1. The homoclinic orbit is asymptotically stable (unstable) if rr'é( »)
— po as k — oo (k — —o0). It is exponentially asymptotically stable (exponentially un-
stable) if the approach (o p,, is exponential,

One can show that the stability (or instability) of y is exponential if and only if
0 = tr 3f(0)/ox = X\ + u <0 (or > 0) (s2e Andronov et al. (1], Chow and Hale [1]).

There is a neighborhood W of f such that each g € W has a unique zero near x = 0.
By translation of variables, we can assume g(0) = 0. Let Wy, W' be the stable and unstable
manifolds of zero. Since these manifolds are smooth in g, there are points p, g Of first con-
tact with Lg ( Py,q Of last contact with L,) with respect 1o increasing 7 so that onc of the
pictures in Figure 7 prevails.
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If case (b) prevails, then g has a homoclinic orbit through 0. If ' = {gE W: Pug =
pu} , then one can show that I" has codimension one for a sufficiently small neighborhood
Wof f If W\I'=U, U U,, suppose g € U, coincides with Figure 7a and g € U, coin-
cides with Figure 7¢. If g € U,, then there is a neighborhood V of y containing only the
critical point zero, such that every solution with initial value on /,, the segment between
Py and p, .. leaves V in negative time. Thus, the behavior of solutions near 7 is deter-
mined by what happens to the positive orbit 0*(pu'g) of Pyg- If v is asymptotically stable,
then 0*(pu'g) remains in ¥ and the Poincaré-Bendixson Theorem implies there is a periodic
orbit in V. If it is further assumed that 7y is exponentially asymptotically stable, then there
is a unique periodic orbit in ¥ (see Andronov et al. [1] or Chow and Hale [1]). If v is ex-
ponentially unstable, then 0+(p,‘,g) leaves V in finite time.

If g € U,, that is, Figure 7¢ prevails, then the behavior of solutions near y is deter-
mined by the negative orbit 0"(pm) of Doy If v is unstable, then there is a periodic orbit
in ¥ and it is unique if v is exponentially unstable. If v is exponentially asymptotically
stable, then 0‘(pu‘g) leaves V in finite time.

Finally, one can show that f having hyperbolic equilibrium points and periodic orbits
is a bifurcation point of degree 1 if and only if o, = tr 3f(0)/dx # O; that is, the stability
or instability of v is exponential (see Andronov et al. [1]). These results are summarized in

THEOREM 6.2. A vector field f € X', r 2 3, is a bifurcation point of degree | if and
only if there are a neighborhood W of f and a submanifold T of codimension one in W such
that WAI' = U, U U, where each g € U,- is structurally stable but g + hifg€ U,. he U,.
Then only one of the following situations prevails:

(i) g €T has an elementary saddle-node at x, there are no equilibrium points of g
near x, if g € U, and a saddle and node near x, if g € U,.

(ii) g € T has an elementary focus at Xgo . there is no periodic orbit of g near x, if
g € U, and a periodic orbit near x,, if g € U,—the generic Hopf bifurcation.

(iii) g €T has a periodic orbit y which is stable from one side, unstable from the
other, g € U, has no periodic orbit near y and g € U, has two hyperbolic periodic orbits
near 7.

(iv) o, = tr 3f(0)/ox # 0.g € T has a homoclinic orbit containing a saddle point x,
g € U, has a saddle near x, and no periodic orbit ncar v, g € U, has a saddle point and a
unique hyperbolic periodic orbit near -y which coalesce as § — T.

(v) There is a connection between two distinct saddle points.

Each of the cases (i)--(v) is shown in Figure 8.

There is another interesting phenomenon that can occur with a bifurcation point of
degree 1. In case (i), the unstable manifold of the saddle could be connected to the stable
manifold of the node to form a closed curve as in Figure 9a. They may then coalesce and
disappear to form a hyperbolic periodic orbit.
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Using Theorem 6.2, Sotomayor [1] has proved the following interesting result. Let
H={g: [0,1] — X}, g a C"function, r > 5} with the topology of uniform convergeqce
of the function and its derivatives. Let H, C H be the subset of functions which have the
property that, for any g € H,, there is a finite set of points My, ..., in [0, I] such that
&(u) is structurally stable for u # Hy, g(“i) is a bifurcation point of degree 1 in X" and the
curve defined by g is transversal to the set l‘, of Theorem 6.2 corresponding to the bifurca-
tion point g(u,). Sotomayor [1] has proved that H, is residual in H; that is, one can as-
sume that the bifurcation points on a given curve of vector fields generically will be of the
type stated in Theorem 6.2.

Teixeira [1] has generalized the theory of first order bifurcations in the plane to the

case where the vector field is required only to be transversal to a disk except at a finite num-

ber of points. Newhouse and Peixoto [1] have shown the interesting fact that one can al-
ways pass from one Morse-Smale system to another by a one parameter family of vector
fields for which every bifurcation point is a saddle-node. This result is valid in dimension n.
Generalizations are in Newhouse [2].

The higher order bifurcation points are difficult to classify and only the case of degree
2 has been completely resolved. The local problem near a generalized saddle-node has been
discussed in §4 and near a generalized focus in §5. Leontovich [1] has discussed the gen-
eral case near a homoclinic orbit. For further results, see Andronov et a!. {1], Takens [2].
An example will be given later of a higher order bifurcation near an equili*rium point.




7. Two dimensional periodic systems

In this section, our objective is to discuss subharmonic bifurcation, bifurcation of
homoclinic orbits and the bifurcation of tori for periodic two dimensional systems. The
equation is chosen to have a simple form in order to minimize the notation. Using the
same methods. generalizations are possible (see. for example, Chow and Hale J1]).

Suppose f: R — Ris a C"function, r 2 2, F: R -+ R is continuous and periodic of
period one. The equation to be considered is

(7.1) Y=y F=c-fle)py+ M)
where (A, ) € R varies in a neighborhood of (0, 0). The unperturbed cquation is

(7.2) X=y ¥r=-flx).

Suppose equation (7.2) has a periodic vrbit Ty of least period &, where & is a positive
Integer.

Problem SB. Find a neighborhood U of U and a neighborhood V of (X, u) = 0 such
that, for each (X. p) € V, one knows cxactly the number of k-periodic solutions of (7.1)
which belong to U as well as their stability properties.

A periodic solution of (7.1) which is & times the period of the forcing function F(1) is
called a subharmonic solution of order k.

A solutivn of Problem SB requires some hypotheses. 101 = < (p o). pten. t € R
where ( p (). p (1)) is a k-periodic solution of (7.2}, then the derivative of this funchion 1y

a k-periodic solution of the linear variational equation
(7.3) X = v, v A Op ()f3x] v

We suppose the set of A-periodic solutions of (7.3) is one dimensional. The periodic orhit
I'; of the Hamiltonian system (7.2) must belong to a smooth family of periodic arbits ',
of period wl(a) where a is a real parameter in (- €. €) with «(0) = k. One can show the
hypothesis on equation (7.3) is equivalent to w’'(0) # 0. This hypothesis is generic with re-
spect to the class of vector fields f € C%(R, R), n > 2, with the Whitney topology. Also.
if I, is sufficiently close to a homoclinic orbit, then the above hypothesis is alwavs satistied.
(See Brunovsky and Chow [1]).

If we define the I-periodic function k (a) by
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M = J‘:ﬂ:(t)d’.
(74)

@ =g [ B O - @),

then we can prove the following result due to Hale and Tdboas [1] (for an abstract version,
see Hale [9]).

THEOREM 7.1. Let a,,. a,, be respectively the value of « in {0, 1) for which h,(«)
is @ minimum, maximum and suppose h;(a,,,) > 0, h(a,,) < 0. Then there are neighbor-
hoods U of Ty, V of (X, u) = (0, 0) and two curves C,'; . C;‘, C V containing (0, 0), rangent
respectively fo the lines X = h, (o, Ju, A = hy(ap)u at (0, 0}, dividing V\{0} into two dis-
joint open sets S¥, S;‘ such that equation (7.1) has no subharmonic solution in U for
(X, p) € S¥ and at least 2k for (A, ) in S¥.

We remark that the hypothesis on 4 is generic in F € QR, R). Ar + 1) = £(1).

In the proof of this theorem, it is shown that 2k subharmonic solutions appear as A/u
decreases through a maximum (increases through a minimum) of A, (a). Thus, if the func-
tion ki, (@) has no other maxima or minima in {0, 1), then the conclusion in Theorem 7.1
can be strengthened to say there are exactly 2k subharmonic solutions for (A, y) € S;‘.

Only the idea of the proof will be given. There is a neighborhood Uof I',, 8 > 0,
such that the mapping

x =pla) - ap(a), » = pla) + ap(a)

is a one-to-one C’ transformation from U onto [0, k) x {lal < §}. Thus. it is sufficient to
consider only k-periodic solutions of the form

x(N)=plt +a)+z(r +a), 1) = XD,

z(a) = ~ap(a),  #a) = apla)
with lal <&, a € [0, k). If this change of variables is performed, then the method of
Liapunov-Schmidt can be applied to obtain the usual bifurcation function B(a. X, u). This
function has the form

B(a, A, p) = - Any + um (@) + O(nl + lul)?  as I\, ful - 0.

The remaining argument is a careful analysis of the zeros of this function (see Hale and
Taboas [1]).

For a given ¢, A, u for which B(a. A, u) = 0, one obtains a A-periodic solution which
is close to (p(t + a). j(t + a)). The constant a corresponds to a phase shift and is approxi-
mately determined from the relation i1, (a) = Mu. If h(a) # 0 for a # a,,. ay,. then one
can associate a unique a = a*(A/u) with AMu. As A, u — 0. this function a®(\/u) will ap-
proach a limit if and only if A\fu approaches a constant. This implies that the initial values
of the corresponding k-periodic solution (which are approximately p(a *(Au), pla (X))
will converge to a point on ", as A, u — 0 if and only if A/u approaches a constant as
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A, p — 0. This points out one of the disadvantages of treating the original two parameter
problems in (A, p) as a one parameter problem along a ray (A, m), m fixed, in parameter
space.

Using the results of §4, if A, () has a finite number of extremal values in 0. 1), one
can show that there are at least 2& hyperbolic subharmonics of order &k with k being saddles
and & being either nodes or foci (see, for example, Chow and Hale {1]).

A specific example of equation (7.1) is

1.5) ¥ - x+x% = -\% + uF(1).

Ficure 10.

For (A, u) = (0, 0), the phase portrait is shown in Figure 10 with any neighborhood of the
homoclinic orbit ', containing periodic orbits I‘w(a) with period wta), where (a, 0) is the
initial value of the solution at t = 0. One can show that w(a) — o as a -— a_, mouotoni-
cally. Thus, there is a sequence g, — a,, such that wla,) = k for k > kg (= 7). The pre-
vious results can be applied to each such I, for the subharmonic bifurcation curves C,';,. C,f,.
This suggests that the behavior of solutions of (7.1) near I',, could be very complicated. We
show that this is actually the case.

Suppose f(0) = 0. f'(0) < O and there is 2 homoclinic orbit T, through (0. 0),
[e = {(polt), palt)), € R} U ((0, 0)}. where p(t) — 0 as t — e is a solution of
(7.2). Since (0, 0) is a saddle point, there are a neighborhood V of (X, u) = (0, 0) and 4
1-periodic solution (¢(f, A, ). ¢(t. A, u)) of (7.1) for (A, ) € V. ¢(¢.0,0) = 0. Further-
more. the trajectory v, , TR x R? of this solution has stable manifold Sy and unstable
manifold U, ,, with l-periodic cross-sections

S =Gy () ES, } Uy ()= {(x. y): (4, x, ) € U, 1.

Let  be the period one map of equation (7.1). Then p, , = (#(0. X, p), §(O. X, p)) is a
fixed point of 7 and SM‘(O). U, ,(0) are the stable and unstable manifolds of p.

Problem HB. Find a neighborhood U of T, and a neighborhood V of (X, u) = (0, 0)
such that, for each (X, u) € V, one knows whether or not there is a point ¢ € U which is
transverse homoclinic to p, ..
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As noted in §3, the existence of a point which is transverse homoclinic to p, ,, im-
plies a type of random motion occurs in a neighborhood of 1°,,. Our primary concern here
is to show how the transverse homoclinic point occurs through bifurcation and the connec-
tion with the previous problem of subharmonic bifurcation.

Define the 1-periodic function A_(a) by

(7.6) e = [0dn ha@ =nl [T punRu - ayar

and assume that
a.mn h"(a,)>0.  h'a,) <0

where a,, . a,, are the values of a at which A assumes respectively its minimum, maximum.
We have the following result of Chow, Hale and Mallet-Paret {2].

Tueonrem 7.2. There are neighborhoods U of Ty, V of (A, w) = (0. 0) and two
curves C,., Cyy S V containing (0. 0) tangent respectively to the lines X = h_(a, . X =
ho(aydu at (0, 0). dividing V\((0. 0)} into two disjoint open sets S y . Sy such that equa-
tion (7.1) has no homoclinic points in S, and has transverse honmwoclinic points in S5 .

In any neighborhood of any point (X, u) in the bifurcation set C,, U Cyy. there are
infinitely many subharmonic bifurcations of the type in Theorem 7.1.

Finally, if h. (@) has only a finite number of zeros in (0. 1). then the perivd one map
n has infinitely many hyperbolic saddles and nodes (or fociy in U for (A, p) € S;" .

Note the conditions on /t_, are generic in F.

The proof of the first part of this theorem follows along the same lines as the proof
of Theorem 7.1 for subharmonic solutions. One must replace the Fredholm alternative for
periodic solutions by a Fredholm alternative for solutions bounded on R. This gives rise to
the function h_(a) in (7.6), a function whose importance in this problem was emphasized
by Mel'nikov {1]. To prove the part on subharmonic solutions, one shows that condition
(7.7) implies the corresponding conditions in Theorem 7.1 are satisfied for each i (a) for
which I, € U, See Chow, Hale and Mallet-Paret [1] for details.

Holmes {1] has also proved the first part of Theorem 7.2 dealing with the existence
of homoclinic points. Closely related results for Hamiltonian systems have been obtained by
Churchill, Pecelli and Rod [1]. Holmes and Marsden [1] have extended the first part of
this theorem to certain types of partial differential equations and have applied the results to
the equations for a beam. In this case, technical difficultics primarily arise from the fact
that the semigroup generated by the linear part of the unperturbed system has spectrum
which can include the complete unit circle. A new phenomenon arises because the spectrum
contains one. This can also occur in the finite dimensional case. For example. consider the
equations in R?,

¥-x+xt=-A+ a0+ Hix, ¥), y=-Ar+puG(e) + Lix, v)
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where F, G have period 1, H, L vanish together with their first derivativesat x =0, y = 0
and H(x, 0) = O(Ix}3) as |x} — 0, L(x, ) = 0. For A = u = 0, this equation has a homo-
clinic orbit in the (x, #)-plane. The equdibrium point x = x = 0, y = 0 is not a saddle since
one eigenvalue is zero. To discuss homoclinic orbits for the perturbed equation, one must
find first a periodic solution of period one. The difficulties involved are the same as the
ones encountered in finding a 1-periodic solution which approaches zero as A, u — 0 of an
equation of the form y = —Ay + uG(t) + M(y) where M(y) = O(|¥1*) as |y} — 0. Given
the first nonvanishing coefficient of M( y} and assuming that f ", G(#)dt # 0, this puts re-
strictions on the parameters A, u. For example, if M(y) = fy* + O(1y1**'), 8 # 0, then
k = 2 implies u/A® approaches a constant as A — 0. If k = 3, then u/A? approaches a
constant as A — 0. Once the 1-periodic solution has been obtained, it is not too difficult
to adapt the previous ideas to obtain a transverse homoclinic point in some region of the
parameter space.

It often occurs that one is interested in studying probiems where: the orbit I', is not a
homoclinic orbit, but is the closure of an orbit connécting two distinct equilibrium points.
To obtain a generalization of Theorem 7.2 for this case, we give a procedure’ motivating the
appropriate formula for the corresponding function h_(a). Consider the equation (7.5) with
A = 0. Suppose there is a homoclinic orbit for A small. It must be close to p_,. If it has
the form p_, + uq + o(iul) then q satisfies the equation § + f'(p..)g = F(r). Multiply
by p... integrate from 0 to o, and integrate the term p_ 4 by parts twice. The result is

~Pu(0120) = [ APt

Doing the same thing but integrating from ~ e to zero. one has 5 _(0)q(0) = [°_ F(0)p_(}dt.
Since p,(0) # 0, this implies [~ F(7)p_.(t)dr = 0, which is the same as h_(0) = 0.

Let us turn our attention now to the bifurcation of tori. Suppose G: R? — R?,
F: R x R? x R* — R? are (*-functions. r » 2. A, », €) periodic in t, F(1, v, 0) = 0, and
consider the equation

(7.8) y=G(y)+ FQ, v, €).

For € = 0, suppose this equation has an w-periodic orbit I'. In a neighborhood of I' one
can introduce a moving orthonormal coordinate system ( p. 8) which is w-periodic in 0. The
new equations for (p, 0) have the form

(79) 6=1+6(t8,p,¢), H=R(0.p, ¢

where ©, R are periodic in ¢, 8, 61, 8,0,0) = 0, R(¢, 0, p.0) = ap + O(|pl?) as |p| -~ 0.
If @ # 0, that is, the orbit I" of (7.8) for € = 0 is hyperbolic, then the classical results on the
theory of integral manifolds (see, for example. Hale [1]) imply the existence of a function
p*(t, 0,¢€), p*(t 0,0) = 0 defined for all r, € and periodic in both variables such that
8(1). p*(2, 6(1), €)) is a solution of (7.9) for every solution 6(r) of

6=1+6(0.p%0.¢),e6).
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For equation (7.8), this implies the existence of an invariant cylinder in R x R? with peri-
odic cross-section near the cylinder R x I'. Since the cross-section is periodic, the flow on
the cylinder is equivalent to the existence of a flow on a torus. If the original orbit I is not
hyperbolic, one must determine more explicitly how the nonlinear terms influence the flow.
We return to this problem later.

Suppose H: R} x R¥ — R3 and consider the equation

(7.10) 2= H(, e).

Suppose for € = 0 this equation has a smooth invariant torus 72 on which the flow is parallel;
that is, cither the rotation number is irrational or every orbit is periodic. It is possible to intro-
duce coordinates ( p. 8, ¢) in a neighborhiood of T2 such taat equation (7.10) is equivalent to

(7.11) =1+ 280,06l 6=1+6¢0.0.¢) =R 0.0, ¢

where all functions are periodic in ¢, @ and vanish for (p. €} = (0, 0). Any integral mani-
fold of equation (7.11) which can be represented by a function p*({. 6, €), periodic in ¢, 0
with the same period as the vector field, will correspond to an invariant torus of (7.10).

If the original torus 72 is hyperbolic, then equation (7.10) will have a unique invari-
ant torus in a neighborhood of T2. We will discuss some aspects of the problem when T2
is not hyperbolic. Note that equation (7.9) can be considered as a special case of equation
(7.11) by putting ¢t = ¢.

To be specific, suppose € = (A, u) € R? and

(7.12) R(E.0.p \op) = p? + uf(6.8) + Ag(6. ©) + R(£. 6, p. A, )

where R = O(lol* + (lul + IND(ul + Xl + 1)) as |Al. |ul. lp} — 0. For (A, p) = (0. 0).
equation (7.11) has the invariant torus p = 0 which is asymptotically stable from one side
and unstable from the other. One would suspect that there are no invariant tori for some
(A, u) near zero and two invariant tori for other (A, u): that is, there is a bifurcation of tori
similar to the saddle-node type bifurcation for equilibrium points. We will confirm some of
these suspicions and also point out that other phenomena can occur.

Let us first consider the one parameter problem with A = 0. If

~o LT
(7.13) Jo= T"i"., Ffo S + ¢, ¢+ fyde

is independent of (0, {) (this is a nonresonance condition), then the scaling p — \/thp
can be justified. Using the standard method of averaging (see Hale [1], Diliberto [1]). there
is a transformation of variables which takes (7.11) into an cquivalent equation

F=1+00u'?), d=1+00u",

\ p = ui'2(p? + fysen p) + o(lui'’?) x

as |u| — 0. Integral manifold theory implies there are no invariant tori if f; sgn 4 > 0 and
two hyperbolic invariant tori if fo sgn u < 0.
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If g, = limp .. T 726 + ¢, ¢ + 1)dt is independent of 8, ¢ and X = 4, then one
can apply the same result to the complete equation (7.11) with the only change being that
fo sgn u is replaced by (fy + vg,)sgn u. I this quantity is > 0, there are no invariant tori
and if this quantity is < 0, there are two invariant tori.

From the above discussion, we have obtained the following result. If f, # 0,8, # 0,
then, for any v for which fy + ugy # 0, there is a pg = ug(v. fo. 8o) such that on the
line segment L_, = {(A, u) A =qu, 0 < ul € u,}, there is no invariant torus of (7.11)
in a neighborhood of zero if (f, + ¥8,)sgn u > 0 and there are two hyperbolic tori if
(fo + 18g)sen u > 0.

This result implies a complete solution of the problem of bifurcation of tori except in
a sector S, o containing the line segment l.,, oo =" fo/8o (see Figure 11). This scctor
must be tangent to L7 ot (0, 0). If one assumes the vector field is C™ with the coefti-
cients in the Taylor series in p being trigonometric polynomials and the ratio of the periods
in 8, ¢ are irrational, then it is possible to show that the excluded sector Sm is tangent to
L, at (0, 0) to infinite order.

FiGure 11,

What happens in S70 is very complicated. In fact, when the two tori come too close to-
gether, then generically the rotation number is rational and hyperbolic periodic orbits ap-
pear. The two invariant sets then can meet at these hyperbolic periodic orbits and then
change topological structure. An illustrative example of the cross-sections of these sets is
shown in Figure 12 as the generic bifurcation takes place. The interior set is exponentially
stable in Figure 12a and the exterior one is unstable exponentially. The points correspond-
ing to the periodic orbits are hyperbolic--ail being saaulz noints except for the nodes 4. B,
C D. In Figure 12b, the saddles remain and thepoints A, B are saddle-nodes. In Figure 12¢.
the invariant sets that were similar to tori have disappeared leaving only hyperbolic vrbits.

o
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The complete structure of the solutions in S, o 18 not known. The author is indebted to

Brunovksy and Chow for conversations about this problem.
C
C A
D
B D
FIGURE 12a. FIGURE 12b. FiGure 12¢.




8. Higher order bifurcation nesr equilibrium

In §6, the vector fields in the plane corresponding to bifurcation points of order one
were completely characterized. Higher order bifurcation in any dimension wete discussed in

§§4, 5 for the case of 3 generalized saddle-node or focus. In this section, we give two illus-

trations of a bifurcation point of order two near an equilibrium point for which the com-
plete analysis requires concepts which are global in nature—in particular, involve knowledge
of homoclinic orbits and invariant tori. One vector field is two dimensional for which the
matrsix of the linear approximation near zero has both roots zero but with nonsimple ele-
mentary divisors and is based on Howard and Kopell {1}, The second illustration is a three
dimensional vector field with the matrix of the linear approximation near zero having two
purely imaginary and one zero root. The relevant literature for this latter example is Lang-
ford [1], Guckenheimer [3], Chow and Hale 11l.
Consider the equation

8.1) x=y, y=€xt €6y + ax? + Bxy

where & <0, 8 > 0 are fixed constants and € = (¢,, €,) is real, varying in a neighborhood
of zero.

Knowing the behavior of (8.1) will also determine the behavior for the case a ¥ 0,
8 # O since the change of variables ¢ — =1, €; —> &, X +x, y — ¥y will yield the
above case. Also, the form (8.1) is chosen for simplicity and the qualitative structure
will be unchanged if perturbations (X, Y) in the vector field are made which satisfy
X = Ot + 1y)? + tel(ixt + (yD), ¥ = OWlxl + D0+ el))-

The objective is to discuss the qualitative behavior of the solutions of (8.1)in 2 neigh-

borhood of (x, ¥) = (0, 0) for e varying in a neighborhood of zero.
First, we consider the case €, > 0. The introduction of the scaled variables

€, =62, ez=u62. 5>0,
8.2)
ta 57, x s 82lal7'x yr 830ty

leads to the new equations
83 i=y p=x-x'+uby+sny

where v = Blal ™ .
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For § = 0, equation (8.3) is conservative with the first integral V{x, y) = y?/2 -
x2/2 + x3/3. The equilibrium point (0, 0) is a saddle point with a homoclinic orbit I"
through it while the equilibrium point (1, 0) is a center. The first step is to analyze the
periodic orbits of equation (8.3).

LEMMA 8.1. Every periodic orbit of equation (8.3) must intersect the segment (0, 1)
x {0} in the (x, y)yplane. There are a continuous positive function 8 ,(b), b € (0, 1), and
a continuously differentiable function u*(b, 8), b € (0, 1), 18] < 84(b) such that equation
(8.3) has a periodic orbit if and only if u = u™(b, 8). Furthermore, du*(b, 0)/db < 0,
u*b,0)— ~yasb— 1, u*b 0)—>~6v/7Tas b — 0. Finally, if u=u*(d, 8)fora
fixed b € (0, 1) and (8| < §,(b), then the periodic orbit through (b, Q) is the only one cor-
responding to this u, 8.

Only a sketch of the proof is given (see Chow and Hale [1] for details based on Carr
[1]). The first statement is obvious since the index of a periodic orbit is one. If & € (0, 1)
is on a periodic orbit T, then f- Pdt = 0. Using the fact that the orbit I' must be symmetric
with respect to the x-axis, this implies that

b b
#f:( )yzdx + 7f:( )xyzdx=0

where (c(b), 0) €T, c(b) > ). This defines u*(b, 5). The other assertions require a number
of computations which will not be given.

Let T, = {(p(1), b(1), t € R} U {(0, 0)} where p_, is a solution of (8.3) for
€=0,p.(t) —0ast — too. Using the type of analysis in §7, one can find a unique
curve in the (u, §)-plane for 8 small along which equation (8.3) has a homoclinic orbit. This
gives a curve C,, in the € = (¢, , €, )-plane defined for 0 < €| < ¢, parametrically by a func-
tion €, = c(e!/?)e, where c(0) = ~yv, v = [=,q.4%//7.4*. On C,, the homoclinic orbit
is asymptotically stable from §6. Using the formulas which define the homoclinic orbit from
Chow, Hale and Mallet-Paret [2], one shows that there is a unique periodic orbit to the left
of C,. To the right of C,. every solution of (8.3) leaves a neighborhood of I"_,.

To the left of C, and close to C,, where the periodic orbit exists, this orbit passes
through (b, 0) where b is close to zero. Lemma 2.1 implies that this orbit continues to exist
and is the unique periodic orbit on the ray €, = u*(b, §)e,. Thus, as long as b remains in
an interval (0, 1 — d], d € (0. 1), we have the existence on a uniform §-interval 0 < |§| <
8o(d). To obtain a uniform §-interval for b € (0, 1). we analyze carefully the neighborhood
of the equilibrium point (1, 0). The matrix of the linear variational equation near the equil-
ibrium point (1, 0) has complex eigenvalues with real parts §(u + v) and are *jat § = 0.
The bifurcation function G(a, §, u) for periodic orbits obtained as in §5 is an analytic func-
tion of (a, 8, ) near (g, 0, ~v). Also, G(a, 0, u) = 0 for all (a, u) since equation (8.3) for
5 = 0 has a first integral (Corollary 54). Since G(0. 8, u) = 0 for all §, u. this implies
that the bifurcation equation G(a, &, u) = 0 can be replaced by the equivalent equation
H(a, 8, u) = 0, where H(a, 5, u) = G(a, 8, u)/as. Also, H(0, 0, p) = u + § + (terms
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vanishing for (g, 8) = (0, 0)). The Implicit Function Theorem implies there is a unique func-
tion p*(a, 8) such that H(a, 8, u*(a. 8)) = O for la] < a,, 18] < 8,. This gives the addi-
tional uniformity in § for b near 1.

Combining all of this information, the half-plane ¢, > 0 can be divided into four sec-
tors as shown in Figure 13a for which the corresponding flows are given in Figures 13b, c. d.

FIGURE 13a. FIGURE 13b. Sector 1.

FIGURE 13¢. Sector 2. FiGure 13d. Sector 3.

Arnol'd {1, p. 255] has considered the same nonlinearities as in (8.1) but with the
perturbation term ¢, + €, x.

Carr (1] has given a complete discussion of the bifurcations in the more complicated
equation x =y, y = €,x + ;¥ + ax’ + fix?y.

The next example is concerned with a differential equation in R? for which the linear
variational equation near the equilibrium point zero has two purely imaginary eigenvalues
and one zero eigenvalue. To simplify the situation, it will be assumed also that a certain
type of symmetry prevails. More specifically, consider the equation

(8.4) x=A\x + fix, ), y=8y+gxy)
where X, B are small real parameters, x € R?, y € R, f, g are C*-functions,
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A1
AQN) = '
(8.5) ® -1 A

f(x, ») = OQxi(ixl + 1yD),  g(x, ¥) = O(Ix| + [y})?
as |x|, |yl — 0. The hypothesis on f implies that the symmetry condition

(8.6) 10.y)=0

is satisfied.

Since f(0, y) = 0, it is legitimate to introduce polar coordinates for x = (x,, x,) as
X, =pcos b, x, =—psin 8. If this is done and ¢ is replaced by 8, one obtains the equa-
tions

(8.7) p=Ap+RO.p,y,0.8), y=8p+ Y00 rap

where R = O(lpl(ipl + [y])). ¥ = O((lpl + |y1)*) as p, y — O.

The problem is to determine the behavior of the solutions of (8.7) in a neighborhood
of (p. ¥) = (0, 0) for (A, B) in a neighborhood of (0, 0). To discuss (8.7). we suppose that
an application of the theory of normal forms to (8.7) yields the system

(88) 5 =p(\ +ay + bp?) + O(lp| + Iy1)?), ¥ =By +cy? +dp? + O((lo] + 1¥DY)

as p, v — 0. The generic situation is to have a, b, ¢, d nonzero constants.
To simplify the computations and also to consider the most interesting case, we sup-

posea =2,b=1,c=d=-1.so that the truncated form of (8.8) using only the lowest
order terms is
(8.9) 6=p(A+2y+p%), y=pp-y?-pl

The first objective is to discuss the behavior of the solutions of (8.9) as a function of a. §.
It is convenient to introduce the change of variables y +— /2 + y, A + § + a. to obtain the
more symmetric form

(8.10) p=pla+2y+pd)  ¥=p24-p?-p2
If we perform the scalings

(8.11) prep. yireey, e, arrea, te 't
the new equations become

(8.12) p=2ov+ap+ep’. y=1/4-p-p2

Equations (8.12) must be discussed for all p > 0, y € R, a € R and ¢ in a neighborhood of
¢ =0.
For a = 0, € = 0, the function

(®.14) p. y) = pld - py* ~ 013

is a first integral of (8.12). Differentiating this function along the solutions of (8.12), it is
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not difficult to see that no periodic orbits can exist unless a = 0 when ¢ = 0. This remark
makes much of the discussion of (8.12) very simple since it is only necessary to determine
the structure of the equilibrium points away from the critical value a = 0, ¢ = 0.

The equilibrium points of (8.12) are p = 0, y = £ 1/2, for all a, € and the point y =
—af2,p* = (1 -a?)f4fore=0,a® < 1. Fora? # 1 the points p = 0, y = * 1/2 are hy-
perbolic saddles or nodes. Further analysis of the other equilibrium point for a® < | shows
that the original (A, 8)-plane, A = fa - 8, 8 = €, can be divided into sectors as shown in
Figure 14a with the corresponding phase protrait for g > 0 given in Figure 15. The situation
is similar for 8 > 0. There is a saddle-node bifurcation on each of the solid curves in
Figure 14a. The analysis in a neighborhood of the dotted line A = — g requires further study
and will now be given.

B
W
\
3\
\
4 \ !
S 8 iy
\
b\
\
. B=-Ar/2
A
g=-)
FIGURE 14a.
1 B8
_— e — — A
\
A=-8

’\ homoclinic

FIGURE 14b.
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For a = 0, ¢ = 0 in (8.12), the phase portrait is determined by the first integral
W p, ) in (8.13) and is shown in Figure 16. There is a heteroclinic orbit connecting the
two saddle points. Let (p4(f), yo(r)), po(#) > O, be the solution of (8.12) fora =€ =10
such that po(¢) —> O as ¢t —> oo, y () — Y% as t —> —o0, y (¢) — % as 1 —» oo Using
the remarks after Theorem 7.2, one can obtain a function G(a, €) for |al, le] < & such that
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equation (8.12) has a heteroclinic orbit if and only if G(a, €) = 0. Furthermore, the func-
tion (5 satisfies

Gla. €)= a [ p2orde + € [ od(t)de + O(lal + 1e)?)

as a, ¢ — 0. The Implicit Function Theorem implies there is a unique solution a = a *(¢)
of this equation for € sufficiently small, a *(0) = 0 and

- d_gfd__(_)u‘o__ = a4 LI _ 1
% T - f_upo(’)df/f__po(t)dt_—i,

This gives a curve A = A *(f) in the original parameter space (), §) where there is a hetero-
clinic orbit for equation (8.10). This curve is given approximately by A *(§) = -8 - 48%.
Near the line A = —g (or a = 0), there is also a Hopf bifurcation. Neara = 0,¢ = 0,

equation (8.12) has an equilibrium solution given approximately by y, = —(« + €/4)/2.
po = 1/2 + y,. Analyzing the stability properties of this solution, we see that it has eigen-
values on the imaginary axis along a curve given approximately by a = ~3¢/4 or A = ~§ -

33%/4. One can actually show there is a Hopf bifurcation along this curve. Also, one can
show there is a unique periodic orbit between this curve and the one defining the liomo-
clinic orbit. This implies the complete bifurcation diagram near the line A = -3 is the one
shown in Figure 14b. The flow in region 2’ is shown in Figure 15. The flow on the homo-
clinic curve is shown in Figure 16. For the details of the above computations see Chow and
Hale (1].

It remains to relate the solutions of the approximate equations (8.12) to the complete
equations (8.8). Since the perturbation terms are periodic in ¢, it is not difficult to show
that the equilibrium points of (8.12) become periodic solutions of (8.8) and periodic orbits
of (8.12) become invariant tori for (8.8). Around the homoclinic orbit, one expects a be-
havior similar to the one discussed in §7. The precise behavior, of course, depends upon
the higher order terms in (8.8) and the method of analysis will be similar to the one in §7.

Equations (8.8) are the generic situation for two purely imaginary and one zero eigen-
value. If further symmetries occur in the problem, there may be no second order terms in
the normal form for the vector field. In this case, the simplest case for the approximate
equations are

5= (A —ar? - by?), v =vp+cr?+dv?)
with a, b, ¢, d fixed nonzeio constants and A, § small bifurcation parameters. In the case

of a fourth order equation with two purely imaginary roots, the same equations occur in a
natural way coupled with two angle variables. The complete bifurcation diagram for this

equation cannot be obtained without the addition of terms of order five. 1t is much more
difficult and the reader is referred to Holmes [2], Guckenheimer [4]. Chow and Hale [1]




9. A framework for infinite dimensions

For infinite dimensional systems, the generic theory analogous to the one discussed in
§3 is in its infancy. In this section, we outline an approach to the development of such a
theory for a special class of semigroups of transformations. This class is general enough to
include some types of parabolic and hyperbolic partial differential equations as well as re-
tarded functional differential equations and some neutral functional differential equations.

Let X, Y, Z be Banach spaces and let X" = C*(Y, Z), r > 1, be the set of functions
from Y to Z which are bounded and uniformly continuous together with their derivatives up
through order . We impose the usual topology on X”. For each f€ X’ let Tf(t): X — X,
t 2 0 be a strongly continuous semigroup of transformations on X. For each x € X, we
suppose T,(t)x is defined for each ¢ > 0 and is C” in x.

In applications, one often is interested in open subsets of X, Y, but this presents mainly
notational difficulties and therefore will not be discussed.

We say that a point x, has a backward extension (relative to T, (1) if there is a func-
tion ¢: (—e°, 0] — X such that ¢(0) = x,, and T(e(r) = ¢t + 1) forall 0 <r < -7,
7 € (-, 0]. If x4 has a backward extension ¢, we define Tf(t)xo, 1 < 0, by the relation
Ty(t)xo = ¢(r) and say that Tf(t)x0 is defined for ¢t € 0.

The positive orbit 0% (x,) through x, is O (xy) = U, 5, T/(1)xy. The negative orbit
07 (x) through x, is 07 (xg) = U, <o T;()x, if T/(1)x, is defined for ¢ < 0. The w-limir
set w(xy) of xo and a-limit set a(x,) of x, are defined as

wixg) = N o U Tn)xg, olxg) = N C U Tp()x,.
120 tar 7<0 t<r

A set M C X is invariant (relative to T,(t)) if, for any x5 € M, T,(t)x, is defined for
t <0 and Tf(t)xo € M for all t € (—eo, ). An equilibrium point of Tf(t) is an invariant
set consisting of a single point; that is, an x, € X such that Tp(t)xy = x4 for alreR. A
periodic orbit v of Tf(t) is an invariant set which is a closed curve; that is, there are an
Xy € X and an w > 0 such that T, (0)x, = 7t + w)x, for t € R, w is the least period,
and v = U, T,()x,.

The following result is easy to prove (see, for example, Hale [5]).

ProvosiTION 9.1. If O* (xq) is precompact, then w(x,) is @ nonempty compact con-
nected invariant set and dist(T(¢)x,, w(xg)) —> 0ast —> oo
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Let
(CAD) Af = (x € X: T]-(I).t is defined and bounded for ¢ € 0},

This set contains all equilibrium points, periodic orbits and the w-limit sets of any compact
orbit. The set A, is invariant. For any bounded open set N C X, let

9.2) A,N) = {x€ X! T (#)x is defined and belongs to N for 1 < 0}

ProvositTion 9.2. IfA rlis compact, it is maximal compact invariant and attracts points
of X. 1f, in addition, T,(t) is one-to-one on Ay, then Tf(l) is @ continuous group on A .

The proof is elementary.

DerINITION 9.3, For f, g € X", we say f is equivalent to g, f ~ g, if there is a home-
omorphism s: A, — 4, such that & maps the orbits of T,(t) on A4, onto the orbits of T (1)
on A, preserving the sense of direction in time. An f € X" is structurally stable if there is
a neighborhood ¥ of fsuch that f ~ g forevery g € V. An S € X" is a bifurcation point
if it is not structurally stable.

DeFINITION 9.4, For f, g € X", we say [ is locally equivalent 1o g in a neighborhood
of x4 if there are neighborhoods ¥, M of x, and a homeomorphism h: A,(N) — AS(M)
such that & takes the orbits of Tf(() on Af(N) onto the orbits of Tx(t) on Ax(M) preserving
the sense of direction in time. An f € X' is locally structurally stable if there is a neighbor-
hood ¥V of f such that f is locally equivalent to g at x, for every g € V.

It is important to notice that the flows defined by Tf(r). Tg(r) are compared only on
the invariant sets Af, Ag, However, in order for there to be a homeomorphism between Af
and Ax for each g in a neighborhood of f, the set A, must have some strong type of stability
as an invariant set of Tf(t). We shall see several illustrations of this remark in infinite di-
mensional problems, but the idea is easily understood by comparing this definition with the
one given in §3 for ordinary differential equations in R".

Consider the equation

9.3) x = Bx + f(x)

where x € R”, (0} = 0, 37(0)/3x = 0. If W;‘ is the unstable manifold of zero (it could
contain only the point zero), suppose there is a neighborhood N of x = 0 such that if

Xy € N\W;‘. then there is a r <0 such that Tf(rlxo € 3aN. 1t follows that Af(N) = Wf“ NN
If fis locally structurally stable at zero according to Definition 9.4, then one can show that
the equilibrium point x = 0 of (9.3) must be hyperbolic; that is, Re AB # 0. Also, there is
a neighborhood ¥V of fsuch that, for each g € V, there are a neighborliood M of zero, a
unique equilibrium point Xy of g€ M and AK(M) = W"(xg) N M. In Definition 9 4, the
trajectories in a full neighborhood of zero are not compared, and they are not even com-
pared on the stable manifold. It frequently happens in applications in infinite dimensions
that the stable manifold is infinite dimensional and the unstable manifold is finite dimen-
sional. Comparison of trajectories on the infinite dimensional parts seems to be impossible.

Thus, the definition of equivalence is chosen as above.
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To define a large class of semigroups Tf(l) which will guarantee that 4 7 s compact,
maximal invariant and satisfies some stability properties. we need some additional notation.

Let a(B) be the Kuratowskii measure of noncompactness of a bounded set B in a
Banach space X; that is, a(B) = inf{d > 0: B has a finite cover with each element of diam-
eter <d}. If T: X — X is continuous, we say T is a conditional a-contraction if there is a
constant k € (0, 1) such that o(7B) < ka(B) for all bounded sets B in X for which T8 is
bounded. The map is an a-contraction if it is a conditional a<ontraction and takes bounded
sets into bounded sets. For general properties of the measure of noncompactness and « -
contractions, see Sadovskii {1} or Martin [1]. A map T is conditionally completely con-
tinuous, if, for any bounded set B for which TB is bounded, the closure of TB is compact .
W T(r). 1 > 0, is a family of maps, we say it is a conditional a-contraction {or conditionally
completely continuous) if for each ¢ and each bounded set B for which {T(r)B, 0< 7 < 1}
is bounded, o(T(r)B) < k(t)a(B) for some k(¢) € [0, 1) [or the closure of T(+)B is com-
pact].

If r (T) denotes the radius of the essential spectrum of a linear operator T and
r,(T) <1, then there is an equivalent norm in X such that T = § + U whete S, U are linear
operators with | S| < ! and U compact (see Leggett [1], [2], Massatt [3]). Thus. therc is
an equivalent norm in X such that T is an a-contraction.

The semigroup Tf(t) is a conditional a-contraction if it is a conditional a-contraction
for each ¢+ > 0. If Tf(t) is linear with re(Tf(t)) < exp(—ft) for some § > 0, then there is an
equivalent norm in X such that T,(1) is an a<ontraction for each 1 > 0.

ProrosiTion 9.5. If T((2) is a conditional a-contraction, then each bounded orbit is
precompact.

The proof is trivial since O*(x,) is invariant under Ty(¢) for each + > 0.

A set K C X is said to attract a set M C X (relative to Tf(t)) if disl(Tf(I)M. A)—0
as t — oo A set K in X is stable (relative to Tf(!)) if, for any neighborhood U of K, there
is a neighborhood ¥ of K such that Tr(t) VCU t20. AsetKin X is asymptotically
stable (uniformly asymptotically stable) if it is stable and there is a neighborhood W of K
such that K attracts points of W (K attracts W).

The semigroup T,(t) is point (local) (compact) dissipative if there is a bounded set B
in X such that B attracts each point (some neighborhood of each point) (each compact set)
of X.

Prorosition 9.6. If Tf(t) is a conditional a~contraction and compact dissipative,
then A sisa maximal compact invariant set and 4 I is uniformly asympiotically s:able. 1f
T,(!) is a conditional a-~contraction, point dissipative and there is some neighborhood O, of
each x € X such that U, >0 Tf(l)Ox is bounded, then the same conclusion holds, If T_,.(l)
is point dissipative and conditionally completely continuous, then the same conclusion holds.
If. in addition, the orbits of bounded sets are bounded, then A ¢ attracts bounded sets of X.

For a proof of these results, see Cooperman [1], Hale [6], Massatt [1].
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In many applications, the semigroup T,(t) is not a general a <ontraction but satisfies
the condition T,(t) = S,(t) + U,(t) where Sf(t) is a linear contraction for each t > 0 and
the mapping U,(r) is conditionally completely continuous. Also, the family of mappings
Tj(t) is a semigroup on two Banach spaces X,, X, with X, compactly imbedded in X,.
Suppose also that, for any set 8 in X, for which 8 and U (1)8 are bounded in X, , it fol-
lows that Uf(l) is bounded in X, . In this situation, Massatt [$] has recently proved the im-
portant result that point dissipative in X, is equivalent to compact dissipative in X,. This
is the same result as the one that is stated in Proposition 9.6 for the case when Sf(!) = 0 for
alt r. Other properties of the same type of maps have been discussed by Massatt [2].

Our primary objective is to study how the set 4 ! varies with f. The easiest result to
obtain is the upper semicontinuity in f and is stated precisely in the following

ProPOSITION 9.7. Suppose there is a neighborhood V of f and a bounded set B C X
such that, for eachg €V, Tg(t) is an a-contraction, B attracts compact sets of X relative to
T, (6) and {T()H, t > O} is bounded for each bounded set H C X. Then A is upper semi-
continuous at f; that is, for any neighborhood U of A 1 there is a neighborhood W of { such
that Ax CUforgEW.

The idea of the proof is the following. From Proposition 9.6, Ag is compact and
A, C B for every g € V. Also, Proposition 9.6 implies Af is uniformly asymptotically stable
and attracts B. This is enough to complete the proof. Results similar to Proposition 9.7 for
locally compact spaces have been proved by Marchetti et al. [1].

Before proceeding further, let us give some examples of semigroups which are a -con-
tractions. Suppose A is a linear operator (bounded or unbounded) for which -4 is the
infinitesimal generator of a strongly continuous semigroup S(r) on Z. Suppose X is a Banach
space which can be continuously imbedded in Z and f: X — Z is a given function. The ex-
amples will be special cases of an evolutionary equation

(94) u+ Au = f(u)
which generates a semigroup Tf(z) for which the variation of constants formula holds,

9.5) T,(0)x = Styx + [ | (e - Dftutrdr = S()x + Uinx

where the radius r,(S(¢)) of the essential spectrum of §(¢) satisfies
9.6) r(S() < exp(-pf). >0,

for some g > 0 and

9.7) U(t) is conditionally completely continuous.

From (9.6), (9.7). it follows that there is an equivalent norm with the property that
T,(t) is a conditional a contraction,

The idea for the proof is simple. Since r,.(S(r)) < exp(~f¢) for any 1 > 0, the space
Z can be decomposed as Z = Z, @ 7, where Z, Z, arc independent of ¢, invariant under

.
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8(t), Z, is finite dimensional and the spectrum of S(¢) restricted to Z, is inside the disk
centered at zero with radius exp(~gt) with 8§ > 0. Now one can renorm so that S(r) re-
stricted to Z, has norm < exp(-§t), § > 0.

Qur first example concerns the case where A4 is sectorial. A linear operator 4 on Z is
sectorial if it is closed, densely defined, such that, for some ¢ in (0, n/2) and M > 1,4 C R,
the sector

Spo = (N o<larg(A~a) < m, A #4)

is in the resolvent set of A and (A —A) "} | S M/IA —af for A € S,.4- A semigroup of
operators S(¢) on Z is gnalytic if the map t — T(t)z is real analytic on 0 < 1 < oo for each
z € Z If A is sectorial, then — A is the generator of an analytic semigroup S(¢) and con-
versely (sce Friedman 1], Henry (1], Pazy [1], Martin {1]). In addition, if 4 has compact
resolvent, then S(z) is compact for £ > 0, r,(S(¢)) = 0 for ¢ > 0 and so relation (9.6) in an
appropriate norm is satisfied for any g > 0.
If A is sectorial, then one can define the fractional powers (4 + af)* of 4 + al and
the spaces Z* = D((4 + al)™) with the graph norm. If f€ X' = C"(Z%, Z),0<a< I,
r > 1, then equation (9.4) generates a semigroup T,(r) on Z* satisfying (9.5), (9.7) provided
that f takes bounded sets into bounded sets and the resolvent set of A is compact. The spaces
X Y Zare X=Y =2% Z =2 Tosatisfy (9.6), additional restrictions must be imposed on 4.
A specific example of the latter situation is

(9.8) ufdt — Au=flx,u,u,) in&, u=0 ondQ

where € is a bounded open set in R” with smooth boundary, f€ X" = C"(£2 x R x R, R).
In W = L?(Q, R), the operator A = ~ A with domain H}(Q) N HY(Q) = W) -3 () N w23 (§)
is sectorial with compact resolvent. For some restrictions on the rate of growth of f(-,u. v)
in u, v, there is an « in (0, 1) such that equation (9.8) generates a strongly continuous semi-
group on W%, Inthiscase X = W*, Y=Q x R x R, Z=R.

Other problems that could be considered for (9.5) are cases when f(x, u, v) is indepen-
dent of v; that is, Y = Q x R, or f(x, u, v) independent of x, v; that is, Y = R. As the
function f is restricted to a smaller class, the generic theory will become more difficult.

One could also change the boundary conditions to some other form or consider sys-
tems of parabolic equations and obtain semigroups of the same qualitative type.

With € as in (9.8), f € X" = C"(§2 x R, R). > 0 a constant, consider the equation

©9) e —BAU, ~ Bu=f(x,u) inQ, u=0 ondf.
Webb [1] has shown that (9.9) generates a semigroup Tf(t) on D(A) x L2(§2, R}, 4 = - A,
D(4) = H)(S)) N H*(Q). It is possible to show that T, () also satisfies (9.5)-(9.7) (sce,

for example, Massatt [4]).
In an appropriate Sobolev space, there is a semigroup generated by the beam equation

2 4 2 2
9.10) Tty o2 psif! ule. D)}y ) QU 4 524 _ g
2 ax‘ o ax? or

at of
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satisfying (9.5), (9.6). Relation (9.7) does not appear to be satisfied. Ball [1], however,
has obtained interesting qualitative results on this equation exploiting (9.5), (9.6) and con- .
vergence in the weak topology. This suggests that axiom (9.7) should be weakened in some
way.

Retarded functional differential equations generate semjgroups satisfying (9.5)—(9.7).
Suppose r > 0, C = (|-, 0], R"), f € X* = C¥(C, R"), k > 1 and consider the equation

(9.11) (1) = f(x,)

where x(0) = x(t + 8), -r < 6 < 0. For any ¢ € C, there is a unique solution x(g) of
(9.11) with initial value ¢ at r = 0. If we assume that x(¢)(z) is defined for 7 > 0 and let
T,(r)d: = x,(¢), 1 > 0, then Tf(t)¢ is a strongly continuous semigroup on C  Let S(f) be
the semigroup on C generated by x%(f) = 0; that is, 5{(r) = T, (¢),

ot+0), t+06<0,

S(1e(8) =
0(6) #(0), t+020.

Then r,(S(:)) = 0 for ¢ > 0. Also,

TA)(0) = SMO) + [ St ~ N X(O(T,(r)9)dr

where X (6) = 0for§ <0,=/for@ =0,5( -7)X,(0)=0fort~7+6<0,=1for
t—7+48>0. Thus,

t def
012 TUe=SWe+ [t - DX, [TeNdr S 508 + Une
with the interpretation as above. Relation (9.12) is the analogue of (9.5) and one can show
that U(¢) is conditionally completely continuous if f takes bounded sets into bounded sets

(see Hale [3]). In this case, our spaces X, Y, Zare X=C=Y, Z = R".
For the difference-differential equation

9.13) x() = f(x(2), x(z ~ 1)
the spaces X, ¥, Zare X = C, Y = R" x R", Z = R". For the equation
©.14) x(1) = flx(t ~ )

the spaces are X = C, Y =R", Z = R".

It is possible to discuss these retarded equations in other spaces than C, for example,
R” x L3({-r. 0], R™). Relation (9.12) and r,(S(¢)) = O for ¢ > 0 still remain true (see
Hale [3] for references).

For the case of infinite delay in equation (9.11), it is not difficult to obtain spaces X
of initial data for which one obtains a strongly continuous semigroup Tf(t) on X satisfying
(9.12) with $(r) a strongly continuous semigroup and U(r) conditionally completely contin-
uous. For the number r(S(+)) to satisfy (9.6), one must impose some additional conditions
on the space X. For example, if X is a fading memory space, the kernel approaching zero
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exponentially is sufficient. Many other spaces assure that (9.6) is satisfied (see Hale and
Kato [1}, Schumacher [1]). The survey articles of Hale [4], Corduneanu and Laksmikan-
tham [1] should be consulted for references and more specific properties of equations with
infinite delays.

Some functional differential equations of neutral type also will generate semigroups
satisfying all of the properties mentioned above. For example, this will be true for the
equation

N
(9.15) % ["‘(’) - k};, Apx(t 1) - h(f ° 4@)x(t + e)do)] = g(x,)

with k € CK(R, R"), g€ C¥(C, R™), r,,, r > 0, A(8) a continuous n x n matrix, each A, is
an n x n constant matrix and the zero solution of the difference equation

(9.16) "o - }]_i, Apyt-r)=0
k=1

is uniformly asymptotically stable. The semigroup S(¢) is the one generated by the equation

d N
(P - X Axt-r) | =0
k=1

The parameter f in the semigroup for (9.15) is {A4,, A(), & h}. These equations arise
naturally from certain linear hyperbolic partial differential equations with nonlinear bound-
ary conditions (see Hale [3] for references and details).

For g = 0 in (9.15), one also obtains semigroups generated by the functional equation

9.17) ) - f': AX(t—r) - h(f_orA(G)x(t + 0)d0> =0
k=1

with initial data ¢ restricted to Cy, where C, for a € R" is defined by

C,={0€EC:0) - A, 0(-r,) - h(ff,A(O)M)dl?) = 42-
p .

In this case, Cy is a closed subset of C--a nonlinear manifold which depends on the coeffi-
cients A, and the functions 4, 4. From the qualitative point of view, it may be desirable
not to consider (9.17), but to consider (9.14) with g = O realizing that C, for each s €R"
is invariant under the semigroup.

There is a tremendous literature on semigroups generated by evolutionary equations
with delays—a combination of equations (9.4) and (9.11). Both the theory and applications
are fairly well developed and it is impossible here to go into this interesting subject. A repre-
sentative selection of the literature can be obtained by consulting the references in Slemrod
f1], [2], Infante and Walker [1], Dafermos and Nohel {1), Fitzgibbon [1}.
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The above examples certainly are sufficient motivation to study in more detail semi-
groups Tf(t) which satisfy (9.5)—(9.7). All questions, remarks, conjectures, etc. in the fol-
lowing pages are made for semigroups which satisfy at least these conditions. Propaosition 9.2
motivates the following query.

Question 98. If A f is compact, when is there a generic set of f such that Tf(l) is
one-to-one on A f?

Note that the question is for Ajr and not all of X. It does not seem to be reasonable
to ask the same question for all of X.

For parabolic partial differential equations, general conditions are known which imply
that T,(¢) is one-to-one on all of X (see Henry 1], K. Miller [1]; for further references, see
Manselli and Miller [1]). In particular, it is true if the elliptic part of the operator is the
Laplacian. For retarded functional differential equations (9.11) with f analytic, Tf(t) is one-
to-one on A, even though it may not be one-to-one on C. This follows because the func-
tions defining 4, must be analytic (seec Nussbaum [1]). The same result is true for neutral
equations with (9.16) uniformly asymptotically stable (see Hale [3]). For other references
on retarded equations, see Hale [3]. Mallet-Paret has given an example (unpublished) of a
retarded functional differential equation for which Tf(t) is not one-to-one on Af.

Question 9.9. If f is structurally stable, when is Tf( t) one-to-one on A f‘?

Question 9.10. When is A 7 generically a manifold or a finite union of manifolds?

For the case of retarded cquations (9.11), defined on a compact manifold M without
boundary, which are in some sense close to an ordinary differential equation, Kurzweil {1]
has shown that A is diffeomorphic to M. Oliva [1] has generalized these results giving
other conditions which imply Af is diffeomorphic to M. Henry [1] has discussed this ques-
tion for certain gradient systems of parabolic equations and shown that Ay is the union of a
finite number of manifolds. We mention later special retarded functional differential cqua-
tions for which AJ. is the union of a finite number of manifolds.

Of course, an affirmative answer to cither of the above guestions requires conditions
on the manner in which Tf(t) depends on f and a specification of a class X of /s which
gives enough flexibility to move thc orbits in any desired dircction by variations in f.

THEOREM 9.11. If A/ is compact and, for each t > 0, x € A,. D, Tf(t)x is the sum
of a contraction operator and a completely continuous operator, then A r has finite Haus-
dorff dimension.

For X a separable Hilbert space, this result was proved by Mallet-Paret [1]. The gen-
eral case in Theorem 9.11 for X an arbitrary Banach space was proved by Mafié [2]. Lady-
Zenskaya [1] has obtained related results for the Navier-Stokes equation. Mané [2] proved
even more—that the limit capacity of Af is finite. The limit capacity of Ay is defined as
the exponential growth rate of the number of balls of radius exp(~¢) that are required to
cover A, when  — . The limit capacity is always at least as large as the Hausdorff di-
mension. Using results of Cartwright [2], [3], one obtains the following interesting conse-
quence of Theorem 9.11.
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COROLLARY 9.12. If the conditions of Theorem 9.11 are satisfied, then there is an
integer N such that, if there is an x € X such that Tf(t)x is almost periodic, then Tf(r)x is
quasiperiodic with the number of basic frequencies being < N.

Question 9.13. For x € A , when is T,(t)x continuously differentiable in t for
t € (-9, )?

Note again that this question pertains to 4 ¢ and not all of X.

For retarded equations (9.11), this is obviously true because Tf(t)x is defined for
t € 0. For neutral equations for which equation (9.16) is uniformly asymptotically stable
and A(8) has a continuous derivative, it is also true. The proof uses the fact that the semi-
group S(¢) in (9.5) has essential spectrum inside the unit circle for ¢ > 0 (see Hale [3]). 1t
can be generalized to a neutsal equation with the essential spectrum of 8(r) bounded away
from the unit circle for # > 0 (see deOliveira [1]). Some special cases also have been con-
sidered for functional equations by Hale and deOliveira [1]. We remark that T,(r)x is dif-
ferentiable in ¢ for x € A, but is not differentiable for every x € C.

For abstract evolutionary equations, no attempt has been made to show that Te(0)x
is differentiable in 7 for x only in 4;. One approach has been to show that'T(f)x is con-
tinuously differentiable jointly in ¢, x for ¢ > 0 and x € Y, a Banach space continuously im-

bedded in X. Typical hypotheses require that T,(#) is a semigroup also on a Banach space ¥

which can be continuously imbedded in X, Y belongs to the domain of the generator A of
T,(#) and is a bounded operator from Y to X (see Dorroh and Marsden {1], Marsden and
McCracken {1]). For the case where A is sectorial, Henry {1] gives more detailed results on
the differentiability in ¢,

It should be easier to prove differentiability in £ on A, and there should be an abstract
generalization of the known results for functional differential equations. It will be impossi-
ble to obtain any type of generic theory without having this type of smoothness since one
cannot study the local behavior of orbits on Af by taking a linear approximation.

Our next objective is to discuss more detailed properties of A ¢ and, in particular, hy-
perbolicity.

DEFINITION 9.14. An equilibrium point x is hyperbolic if there are a decomposition
of X as X = X* ® X" and positive constants K, « such that X¥ N X¥ = {0}, X*, X¥ arc
invariant under DTf(t)x and

DT A)x)vl < Ke™ @' >0, ve X*, i(DTf(t)x)vl £ Ke*, t<0,v€E X",

It is implicitly assumed that DT,(f)x is defined on X* for £ < 0. If T((r) is an a-
contraction, then DTf(t)x is an a-contraction, the space X" is finite dimensional and
DT/ (f)x is defined on X% fort < 0.

Suppose I' = {T,(t)x. 0 <t < w} is an w-periodic orbit for which T,(t)x is continu-
ously differentiable in 2. (This is one reason we need an answer to Question 9.13.) Let H
be a hyperplane in X that is, H = { ¥y € X: A(y) = O where k is a nontrivial continuous
linear functional on X'}. Suppose there are a neighborhood W of zero in A and a function
¢: W ~— X such that ¢(0) = x and W) is a C'-submanifold of codimension one. let M
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be the tangent space to ¢(W) at x. The set ¥ = ¢(W) is said to be a transversal to I" at x
if dT,(f)x/dt does not belong to M. Let 7 be the Poincaré map defined on a neighborhood
U of x in a transversal ¥ to I" at x. Then 7y is continuously differentiable for y € U.

DEFINITION 9.15. Suppose the notation is as in the previous paragraph. A periodic
orbit T is hyperbolic if there are a decomposition of M as M = M® ® M" and positive con-
stants K, a such that M* N M" = {0}, M5, M* are invariant under Dm(x) and

[(Dr(x)Y'vi < Ke ™", n=z20,veM, [(Dna(x)'v]<Ke®”, n<0, v EMY.

One can define the stable and unstable manifolds for hyperbolic equilibrium points and
periodic orbits in the usual way. For functional differential equations (see Hale [3]) and
nonlinear evolutionary equations (9.4) with 4 sectorial (see Henry [1]), the unstable and
stable manifold intersect transversally at the point or orbit, the unstable manifold is an im-
mersed submanifold of finite dimension and the local stable manifold is diffeomorphic locally
to the stable manifold of the linear approximatiorn.. In general, it is not possible to define a
global stable manifold because the solution operator Tf(t) is not one-to-one for negative ¢
when it is defined. An abstract generalization of these results is needed.

DEFINITION 9.16. Suppose Tf(t)x is continuously differentiable in ¢ if x belongs to a
periodic orbit. Then Tf(t) is said to be Kupka-Smale if:

(i) All equilibrium points are hyperbolic.

(ii) All periodic orbits are hyperbolic.

(iii) The local stable and global unstable manifolds of equilibrium points and periodic
orbits intersect transversally.

Question 9.17. Is the set of f € X" corresponding to Kupka-Smale semigroups generic
in X7

Some results have recently been obtained. For the general retarded functional differen-
tial equations (9.11) with £ € X", the set of C"-functions from C([-h, 0].R™) to R", Mallet-
Parct {2], [3] has shown the answer to the question is affirmative. If f € C"(R" x R". R™)
as in (9.13), he has also shown the same result is true. If 7 € C"(R", R") as in (9.14), the
answer to the question is not known. The fundamental part of the proofs always involves
(as was the case in finite dimension) showing that the set of f for which the periodic orbits
with one not in the spectrum of Dn(x) is dense.

For the neutral equations discussed above, deOliveira [1] has shown that the f such
that the equilibrium points are hyperbolic is open and dense. The general KS property has
not been discussed.

For the parabolic equation

(9.18) u, =ty +flx, 0, 0<x<I,
(9.19) au(t, 0) + u, (1.0) =0,  yu(t. 1)+ 8u (1, 1) =0,
the w-limit set of every bounded orbit is a single equilibrium point; that is, a solution of

(9.20) ., +flx,u)y=0
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satisfying the boundary conditions at x = 0, x = | (see Matano [2}). It is not difficult to
show that these equilibrium points are hyperbolic generically in f € C'(R x R, R). The
same result has recently been proved by Brunovsky and Chow [}] for the equation

(9.21) u =u., +flu), 0<x<1,

with Neumann or Dirichlet boundary conditions, where the function f € C%(R, R) with the
Whitney topology is independent of the space variable x. The restriction to this smaller class
of functions makes the result nontrivial. The methods appear to apply to the general bound-
ary conditions (9.19).

To see why this is nontrivial, consider the Neumann boundary condition « (0) =
u (1) = 0 for the equilibrium equation (9.20). If w(b, f) is the period of the solution of
(9.20) through the point (u(0), u,(0)) = (b, 0), then one must show that the solutions & of
the equation w(b, 1) — 2 = 0 satisfy dw(b, £)/db # 0 for a residual set of f € C}(R, R).
There are classical examples of nonlinear functions f where w(b, [} is a constant function of
b (see, for example, Urabe [1}). This implies that the derivatives of w(b, /) with respect to
b are very complicated functions of the derivatives of f,

For the equation

(9.22) u, = du+ flu) inQ, au+pou/on=0 on o

where £ is a bounded open connected set in R" with smooth boundary, the corresponding
result is not known. In this case, it is reasonable to consider the parameters as f and §2 and
to prove that the equilibrium points are hyperbolic generically in (£, £2). An important role
should be played by results similar to the ones of Uhlenbeck [1] on the simplicity of the
eigenvalues of the Laplacian operator generically in Q.

To the author’s knowledge, property (iii) in the definition of Kupka-Smale systems
has not been discussed for the general equation (9.22). Some partial results of Henry |1],
[2} are mentioned below.

DEFINITION 9.18. Let (f) be the nonwandering set of T,(1). A semigroup Tf(t) is
said to be Morse-Smale if Q2(f) is the union of a finite number of equilibrium points and
periodic orbits, each hyperbolic with stable and unstable manifolds intersecting transversally.

Question 9.19. Are Morse-Smale systems open and structurally stable”

One of the first important problems in any attempt to discuss these last general ques-
tions is to construct several examples. The first step would be to consider systems which
have properties analogous to gradient systems for ordinary differential equations.

Gradient flows defined by parabolic equations have been analyzed by Henry {1]. [2].
[n particular, it is shown that the equation

U =u .+ Mu-u?), 0<x<m 120,
(9.23)
u=0 atx=0.n

is structurally stable in H&(O, D forA&€ (0,9, A #1,X# 4,4, isapoint for 0< A< |,
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A, is a smooth closed arc with three equilibrium points for 1 <X <4, 4, is 2-dimensicnal
and contains 5 equilibrium points for 4 <A < 9.

It is not difficult to see why this should be true if we use our detailed knowledge of
the maximal compact invariant set. In fact, for any A > 0, one can use the invariance onn-
ciple and the function

1 u2 u4
|70 (N Y T
02" "( 2 4
to show that every solution is bounded and approaches a solution of

(9.29) U ¥ Mu-u3)=0

with 4(0) = u(n) = 0. For each A = 0, this equation with these boundary conditions has a finite
number of solutions {u;,j =1, 2, ..., n(\)} with unstable manifolds W“(u,.) of finite dimension.
One can show that this implies A, is compact and attracts bounded sets, 4, = U,'-‘z();)W"(ul-),
and is upper semicontinuous in . If A€ (0, 1),n(A\) = 1,u, = O,Af = {0}. ForA =4, the
half-period for the solutions of the linear part of (9.24) is 7. For X = 4 and close to 4, there are
two additional solutions u,, u near zero, the solution u = 0 is unstable with dim W*(0) = 1.
Thus, #(2) = 3 and A, = W*(0) U {u,} U {u4}is a smooth closed arc. At X =09, there is an-
other bifurcation at zero in a direction independent of the previous bifurcation. This yields

two more solutions—each unstable—and the two dimensional set 4, mentioned before.

For retarded functional differential equations, it does not seem possible to have a sys-
tem which is a gradient system. However, there are some equations which have some of the
same qualitative properties. We discuss such an example in some detail since it brings out
many of the difficulties encountered in infinite dimensions and it also leads to many inter-
esting and specific unsolved problems.

Consider the equation

(9.25) )=~ [ a-0)g(x(z + 0))db

where g € C¥(R, R), a € C*([0, 1], R), fTg — = as |x| — o0, a(1) = 0, a(s) > 0, a(s) <0,
a(s) = 0.

Under these hypotheses, every solution of (9.25) is defined and bounded for r 2 Q. If
C = ([~ 1. 0], R), then the semigroup Ta,g(l): C — C, t 20, is well defined by the rela-
tion Ta_g(t)cp(()) = x(¢)(t + 0), -1 €0 < 0, where x(¢) is the solution of (9.25) through ¢.
If there is an s € [0, 1] such that &(s) > 0, then the w-limit set of any solution is an equi-
librium point of (9.25): that is, a zero of g. 1f 4(s) = O for all s € [0, 1] (that is, a is linear),
then the w-limit set of any solution is either an equilibrium point or a closed orbit given by
{p,. 0 <t <1}, where p(t) is a one-periodic solution ¢f the ordinary differential equation

(9.26) ¥ +a(0)g(y) =0

For a proof of these results, see Hale (3, p. 122].
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Let us consider first the case where @(s) > 0 for all s € [0, 1} and g has a finite num-
ber of simple zeros {al-, J=1,2,...,k} Let

W‘(ai) = {¢ € C: T, ,(1)¢ — the constant function o; as £ — o},

W“(ai) ={¢p€C: T, g(t)¢ — the constant function o as 1 —> —oo},

It is not difficult to show that each «; is hyperbolic and dim W“(e;) < 1. Then

k
A, e = ,'L=J| W“(al.)
is a union of a finite number of manifolds and Ta'g(t) is one-to-one on A4, ,.

It is possible to construct open sets A C C2(|0, 1], R), G in the Whitney topology
on C%(R, R) such that A, ; is upper semicontinuous at each (, g) € A x G. The way to
do this can be discovered from the proof of the above results in Hale [3] and the method
of proof of Proposition 9.7. We can now prove

ProPOSITION 9.20. If d(s) > O for all s € [0, 1], the zeros {o;, j = 1,2, ..., k} of
g are simple, (a, 8) € A x G, and the w-limit set of each W"(ai)\ {0‘/'} is a stable equilibrium,
then (a, g) is structurally stable.

PROOF. Since Aa’g is upper semicontinuous and uniformly asymptotically stable, one
can choose a neighborhood U of 4, , (as small as desired) and a neighborhood V of (g, g)
in A x Gsuch that T, ,(DUC U, t >0, (b, h) € V. Since the zeros of g are simple, we
have dim W"(a,-) < 1.

The assumption that the w-limit set of each W“(ai)\{ai} is a stable equilibrium im-
plies A, o is one dimensional as shown in Figure 17. The theory of the neighborhood of a
saddle point in Hale [3] implies that the flow in U is given as shown in Figure 18, where
the vertical manifolds have codimension | and Aa'g has dimension one. This implies that
A, , has the same topological structure as A, , as well as the samc type of flow.

Lo

R

FIGURE 17. FIGURE 18.

One can now ask the following interesting question.

Question 9.21. Suppose a is a fixed function satisfying @(s) > 0 for s € (0, 1). Let
Gy = {g which have exactly 2k + | zeros which are all simple}. How many different con-
nected components of structurally stable systems are in G,"

If k = 0, that is, g has only one zero «, then Aa'x = {a}, the constant function a and
all g € G, are structurally stable and there is only one component.
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Ifk = 1, then g € G, has three simple zeros, a, <a, < a;, with a,, a, asymptoti-
cally stable and «, a saddle point. Since the unstable manifold at a, is smooth, one dimen-
sional and 4, , is uniformly asymptotically stable, it follows that 4, ; is a one dimensional
manifold with boundary points a,, a,. Again, all elements of G, are structurally stabie.

The topological structure of Aa.x is not understood for the case when g has given
zeros @, < a, < ay <a, <ag. If we consider g depending on some parameters p with
&(x, ) = x5 at u = 0, then A, g(1) is {0} for p = 0. There is a center manifold in a neigh-
borhood of x = 0 which is one dimensional and smooth in u. As u varies near u = 0, g(x, p)
can have as many as S zeros which must lie on this center manifold. Thus, Am,(u) is either
a point or a one dimensional manifold with boundary for u small. As u increases, it is con-
ceivable that the topological structure of 4, ; changes. Let us give some intuitive reasons
for why this is possible. The author wishes to acknowledge conversations with John Mallet-
Paret and Shui-Nee Chow which were of great assistance in the remaining discussion of this

section.
g
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Suppsoe g has five zeros and the general shape shown in Figure 19. If a is strictly
convex and very close to the &-function at zero, then Aa.x is shown in Figure 20. The com-
plete flow near 4, . is shown in Figure 21 with the exponential decay toward 4, . being
very rapid and much greater than the convergence of the flow on ¥ toward 8.

If 2'(B) = a, then the flow ncar 8 is determined by the roots of the characteristic equa-
tion

9.27) N=-a [ a-0)er .
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One can show there are an o, and a strictly convex function a, with the property that the
roots of this equation with maximum real part corresponds to a double root. Change g
slightly so that the zero § disappears and g has only three zeros. Because of the nature of a
stable node with both eigenvalues equal, there are two distinguished directions along which
B can be approached along the unstable manifold of 7y as shown in Figure 22. Choose one

FIGURE 22.

of these directions. Now, one should be able to move g back so that the double zero §
appears but the unstable manifold of 5 approaches § from the other distinguished direction.
If this is the case, then the new Aa,g is shown in Figure 23. Now one can further change g

r"f?s@

FIGURE 23.

to make & become two distinct zeros 8, 6, and the resulting 4, . is structurally stable.
Thus, there are at least two distinct connected components if g has five zeros. To go from one
of these classes to the other keeping the zeros of g simple, it is not difficult to see that one
must have a saddle connection at some point. Since we have not verified that it is possible
to move g as specified above, we state this as

CONJSECTURE 9.22. There is a saddle connection for some (a, g) with a strictly con-
vex and g having five simple zeros. The set of (a, g) for which this is true is not generic.

Another interesting conjecture about equation (9.24) is the following

CONJECTURE 9.23. If d(s) > O for s € [0, 1] and the zeros of g are simple, then the
set W= {W“(ai): o is asymptotically stable} is dense in C.

One could try to prove this using the same idea that Henry [1] employed to prove
the same result for equation (9.23). Let a be a saddle point and for any # > 0, 7 > 0, let
W (@) = {$ €EC: T, ()¢ € Wi(a), IT, ()¢ — al<r}. The set W; (a) is closed. If it
contains a ball B = {¢, + ph: [hl = 1,0<p <r,}, then Ta_g(T)B has been flattened so
that it is contained in a submanifold of codimension one. In particular, 3T, ,(1)(, + ph)/dp
at p = 0 is in the tangent space of W*(a). This function D@,Ta.g(')h is the solution of the
linear variational equation
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#0 = [ a-0)g'(T, )9,)3(0)

with y, = h. If the solution operator of the adjoint of this equation is one-to-one, then
the assertion that W] (a) contains a ball is false. In fact, take a vector 1 # O such that

(n, ¢ = 0 for all ¢ in the tangent space to W*(a) at T, .(1)¢,. Integrating the adjoint equa-
tion for a function z, on [0, ] with z_ = 7, one obtains, for all A, (z,, ) = (z,, h) =

(n, Da,'Tn.g(r)h) = 0. Thus,zy = 0. Since the solution operator for the adjoint equation
is one-to-one, it follows that n = 0. Consequently, the set W:',(oz) contains no ball, which
implies that W:., is closed and nowhere dense. Thus, W*(a) has no interior. This will prove
the conjecture.




10. Bifurcation in infinite dimensions

For systems of parabolic partial differential equations, retarded functional differential
equations and certain types of neutral equations, several problems of local bifurcation near
an equilibrium point can be discussed in essentially the same way as for ordinary differen-
tial equations. In particular, the results in §4 on bifurcation at a zero eigenvalue and in §5
on bifurcation at a focus extend verbatum (see, for example, Marsden and McCracken [1],
deOliveira and Hale [1], Kiethofer [1]). The center manifold theorem plays an important
role in the theoretical justification of the results. For illustrations of the results in §8 for
the case of a double eigenvalue zero, see Carr [1], Howard [1].

Very little attention has been devoted to the manner in which local bifurcation in-
fluences the global flow defined by the equations. In particular, how does the maximal
compact invariant set change at bifurcation points?

Marchetti et al. [I] have some results for locally compact spaces. More specifically,
they relate the change in stability of A ¢ to the appearance of new invariant sets. 1t would
be interesting to extend this to Banach spaces for the type of semigroups mentioned in the
previous section. For the gradient equation (9.23), we have discussed in the previous section
the results of Henry [1], [2] on the manner in which the maximal compact invariant set
changes with a parameter.

For the more general equation (9.21) with f depending only on u and boundary con-
ditions (9.19), Brunovsky and Chow [1] have shown the following interesting fact: generi-
cally in f € C*(R, R), the bifurcations always are saddle-node type; that is, a saddle and
node coalesce and disappear. In particular, this has the following interesting implication
for second order ordinary differential equations. The period w(b, f) of the solution of
#ye ¥ flu) = 0 through the point u(0) = a, u (0) = 0 is a Morse function generically
in . Smoller and Wasserman [1] have also discussed this function in detail for specific
functions f.

For the equation %(f) = — f(x(t - 1)), where f is piccewise linear with a finite number
of jump discontinuitics, Walther [1] and Chow and Walther [1] have discussed the set A,
and the dynamics on Ay in some detail. The hypotheses on f serve as a model for the equa-
tion of Wright (see Nussbaum [2]).

For equation (9.25), we discussed how the sct A, , could bifurcate by the creation of
an arc connecting two saddle points. This is always a bifurcation caused by the global prop-
erties of the flow,
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The analogue of the Generic Hopf Bifurcation Theorem (Theorem 5.€) fcr infinite
dimensional systems is prevalent in the literature. It seems reasonable to say that it is the
generic situation. On the other hand, we must be careful because there are so many differ-
ent ways to model a problem in infinite dimensions. For example, in equation (9.25), the
vector field should be considered determined by the function a(s)g(x), s € [0, 1], x €R;
that is, as a product of a function of s and a function of x. This is certainly an easier model
to discuss than one which uses a general function A(s, x). However, it is still feasible that
all interesting qualitative behavior of solutions can be obtained by considering the integrand
as a product of two functions. For equation (9.25), the function a,, g, satisfying xg(x) > 0
for x # 0,£°(0) = 1, a5(s) = 4n?(1 - 5), is a bifurcation point for every g. The linear vari-
ational equation at zero has all eigenvalues with negative real parts except the purely imagi-
nary ones * 2. Following the procedure in §5, one can compute the bifurcation function
G(b, a, g) for the periodic orbits near zero with the amplitude of the periodic orbits being
given approximately by 5. For the Generic Hopf Bifurcation Theorem to be applicable, one
should have G(b, a,, g) = ﬁaole + 0(|bl3) as {6l — 0, 6‘,0‘ # 0. However, one can show
that Bao_g = Q for all g in the above class' Thus, the bifurcation from the focus is never a
bifurcation of order one. This could not happen if a(s)g(x) were replaced by a general func-
tion h(s, x). For a detailed discussion of this point as well as the nature of the bifurcation
point, see Hale [7].

In the previous section, we noted that it was not known if the Kupka-Smale systems
were generic for X(f) = f(x(z - 1)). This is a problem of the same type as in the previous
paragraph where severe restrictions are imposed on the vector field. We have seen before
that the same difficulties occur in parabolic equations when the nonlinearities depend only
on the dependent variable.

Bifurcation of a periodic orbit to a torus for infinite dimensional systems has been
discussed in some detail (see looss and Joseph [1] for references). Holmes and Marsden [1]
show that equation (9.10) with a periodic forcing can have homoclinic points.

There are some bifurcation problems that are unique to infinite dimensions. For ex-
ample, consider the scala- parabolic equation

(10.1) u,=A&u+ f(u) in, oufdon=0 onaQ

where §2 is a bounded open connected set in R” with smooth boundary 882, If W= L¥*(Q,R),
suppose this equation generates a strongly continuous semigroup on W, a € (0, 1). Then
every bounded orbit is precompact and the w-limit set of any bounded orbit can be shown
to belong to the set £ of equilibrium solutions of (10.1); that is, the set of solutions of the
equation

(10.2) Au+ f(u)=0 in, Odudn=0 ondQ

(see Matano [1]). For n = |, Matano {2] has shown that the w-limit of any bounded orbit
is a single point in £. The same result for arbitrary n is contained in Hale and Massatt [1]
with the additional restriction that every point in a connected component of £ (which is not
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a single point) has zero as a simple eigenvalue of the corresponding linear variational equa-
tion. In particular, if all solutions are bounded and the set of equilibrium points is finite,
then Af is compact, A, = U/ W“(a,-) where W"(a,.) is the unstable manifold of the equilib-
rium point o

For  convex, Casten and Holland [1], Matano [1]| have shown that the only stable
equilibrium points of (10.1) are spatially homogencous; that is, they correspond to constant
functions—the zeros of £ Chafee [2]| previously has proved this result for n = 1. Bardos,
Matano and Smoller [1] have proved a similar result for one equation of the form (10.1)
coupled with some ordinary differential equations. Casten and Holland [1], Matano [1]
also have proved this type of instability for some other special domains §2.

M n> 2 f(u)=u~-ud (or any function with similar properties), Matano [1] has
shown that there are stable equilibrium points of (10.1) which are not spatiaily homogene-
ous if the region £ has certain properties. For example, it is sufficient to have §2 consist
of disjoint open convex connected sets 2, £, joined by a channel £; which is not too
wide compared to the size of Q,, 2, (see Figure 24).

Figure 24,

This leads to the following interesting bifurcation problem. Let f(u) = Au - u?,
AER, and let 2, € € R, be a simply connected open sct in R” with smooth boundary, §2,
convex, Let T, (1) be the semigroup generated by (10.1) for this Jand . Then To.0l)
has a unique cquilibrium point # = 0 which is uniformly asymiptotically stable and attracts
bounded scts of W*. The maximal compact, invariant sct AA‘( for (A, €) = (0, 0) is shown
in Figurc 25a. For A > 0 and small. there are only three equilibrium points 0. 2 A" and
Ay o as shown in Figure 25b. Now suppose that the region §2, with increasing € becomes
nonconvex so that the second cigenvalue u;(¢) for the Neumann problem for the Laplacian
satisfies f'(0) = A < p,(€) for 0 < € < €5, /(0) = py(€y) and £(0) > uy(e) for € > €.

The origin becomes a bifurcation point at € = €4, and 4, _ for € > ¢, in a neighborhood of

€o is shown in Figure 25c. The solutions bifurcating from 0 are spatially nonhomogencous.
Suppose that £, as € — % approaches the set 2, = 2, U Q, U I where &,, 8, L are
disjoint, £2,, §2, are open convex connected sets and L is an (# - 1) dimensional closed
manifold of codimension 1 joining §2, to £2, (in R2, an arc). There will be some point €
such that the conditions for Matano's theorem arc satisfied for € > €, . There will be a sta-
ble spatially nonhomogeneous cquilibrium point. Thus, the set A,  has had to undergo
another bifurcation. This could not have occurred at the equilibrium points 0. * 2™ since
+ A" are uniformly asymptotically stable and 0 has a two dimensional unstable manifold.
Thus, it is rcasonable to conjecture that the unstable spatially nonhomogencous solutions
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undergo a bifurcation as shown in Figure 25d at least if the family of regions Q_ are chosen
appropriately. The bifurcation diagram is conjectured to be the one shown in Figure 25e for
certain Q_. All the solutions are spatially nonhomogeneous except 0, + 2% and the stable
ones occur as a secondary bifurcation. It would be interesting to obtain these curves
numerically. Hale and Vegas [1] showed there is an €3 > O such that the bifurcation
diagram for € > ¢, is the one shown in Figure 25e¢ provided that the region £, satisfies
some conditions in €. The most interesting condition is that the third eigenvalue of the
Laplacian on £, is bounded away from zero for all e. This restriction arises because the
analysis consists in treating the problem as a bifurcation from a double eigenvalue at ¢ = 0.
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If the bifurcation diagram is the one depicted in Figure 25¢ and one introduces an-
other parameter in the vector field f, then one should be able to break all of the symumnetrics
in the problem and obtain a jumping from one state to another as in buckling problems.

Chafee and Infante [1] have investigated the Dirichlet problem

(10.3) u, =+ rlu) inR, u=0 ondQ

for & = [0, n], A € R. Under suitable conditions on f including uf(u) > 0 for u # 0, they
show that the only stable equilibrium solution is u = 0 if 0 <A <A, and either of two
functions u, () for A > X, where u, (}) is positive on (0, 7) and u_(}) is negative on (0, 7).
For 2 S R", one should encounter a much more interesting type of behavior by changing
the shape of the region 2 as we did with the Neumann boundary conditions. To the author’s
knowledge, this problem has not been investigated.

It would also be interesting to discuss the same equation with mixed boundary condi-
tions varying both the boundary conditions and the region.

For systems of reaction diffusion equations with one space variable and Neumann
boundary conditions, one can also obtain stable equilibrium solutions which are not spatially
homogeneous. This is a bifurcation problem where one creates an instability of the zero
solution by making the linear approximation have a zero eigenvalue by varying the diffusion
coefficients and the linear coupling terms (for references and a detailed discussion, sec Fife
{1]). This corresponds to primary bifurcation from the trivial solution whereas the stable
solution in the previous discussion was created through a secondary bifurcation.

For reaction diffusion equations in an unbounded domain, there are some very inter-
esting bifurcation problems associated with traveling wave solutions. Due to limitations in
space, we can only refer to Fife [1] for references.

Another problem which becomes important in infinite dimensions is the discussion of
semigroups T, (¢) which are continuous in a parameter A, but are not continuously differentia-
ble in A. In particular, it is possible to discuss how invariant sets change with A, how the stable
manifolds change with A, etc.? In the qualitative theory, these arc fundamental questions. 1f
T, (¢) has a maximal compact invariant set A, , then all of the interesting properties of the orbits
of T,(t) are determined by the behavior of the orbits on A, . The orbits on 4, are bounded
and defined on (-0, %), As we indicated earlier, for some important types of semigroups, the
fact that orbits on 4, are defined on (o, ) implies that T, (¢)}x for x € 4 is continuously dif-
ferentiable in ¢; that is, the elements in A, arc “smoother™ than a generic clement of the under-
lying space X. Can this additional smoothness on 4, be exploited to discuss how A, varies with
A\? For differential difference equations with the parameter A being the delays, we indicate why
this is feasible. No corresponding results have been obtaincd for partial differential equations.

The following lemma is crucial to the analysis. 1t asserts that the fixed points of a
map can be shown to be continuously differentiable in a parameter X by requiring only the
derivative of the map be differentiable with respect 10 A on the fixed point set. This lemina
was stated in Hale [3] with the omission of the obviously necessavy fact that the derivative
in (iv) below is continuous.

i
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LemMa 10.1. Let F be a closed subset of a Banach space X, Int F # &, A be an
open subset of a Banach space Y, where Int F denotes the interior of F. Assume that T:
F x A — F, (x, \) — T(x, M), satisfies the following set of hypotheses:

(i) T(x, *): A — F is continuous;

(i1) T(-, A): F — F is continuous and has, for each \, a unique fixed point x(\)
which is continuous in \;

(iii) if x(A) = F,, then T(x, )) is continuously differentiable in \ for (x, \)EF, x A;

(iv) there are an open set F\ C X, F C F,, and a § € {0, 1) such that the derivative
of T(x, X) with respect to x is continuous and has norm < § forall (x, \) EF, x A.

Then the fixed point x(X), A € A, of T(x, A) is continuously differentiable in \.

Proor. The proof is an adaptation of the usual proof of differentiability with re-
spect to parameters. We merely give an outline (see P. Lima [1] for details). Let T,(x, X)
= 3T(x, N\)/ar, T (x, A) = 3T(x, A)/3\ and consider the cquation

2 = T, (x(N), Az = T, (x(7), A4

for given & € Y. This equation has a unique solution z(h, A) which is linear in A If
z(h, A) = z(\)h, then one easily shows that 2(}) is continuous in A.

To complete the proof, one must show that z()\) satisfies the definition of the deriva-

tive of x(A); that is,

w " x(\ + h) - x(N) - 200k = o(ihl)
as |l — 0. An easy computation shows that [/ — T, (x()), A\D}w — R(w, X\, #) = o(lhl)
as [l — O where R(y. \, B} = T(x + », \) - T(x, A) = T (x, Ay is o(l¥]) as | ¥| — 0.
One now proves that this implies w = o(lA|) as th| — O.

We illustrate the application of this theorem to prove the Hopf Bifurcation Theorem
with respect to the delays for a differential difference equation. We impose more restrictions
than in Hale [8] because the proof here will be based on the center manifold theorem. By
showing there is an asymptotically stable local center manifold of dimension two which is
continuously differentiable in A, the problem is reduced to the usual one in ordinary differ-
ential equations.

Suppose 2 C R¥ is an open set (the parameter space), C = C([-7, 0].R"), f: 2 x
C—R", L. Q x C— R" are continuous, L(a)¢ is linear in ¢, f(a, ¢) has continuous first
and second derivatives in ¢, f(a, 0) = 0, 3f(a,0)/3a=0. W he notation x,(8) = x(r + 6),
-r € 8 < 0, consider the equation

(104) X0) = L(@)x, + fa, +,).

The first hypothesis is:

(H,) The matrix A(a, \) = A - L(a)e™'l, where | is the identity matrix, is continu-
ously differentiable in a, there is a pair of simple purely imaginary roots tivy, v, > 0, for
« = a, and all other roots of the characteristic equation
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(10.5) det A{a, A) =0

fora = a,, have negative real parts.

Under hypothesis (H, ), there is a 8§ > 0 and a simple characteristic root A(a) which is
€' in « for la - @y} <5 and Mag) = ivy. Then Re Ma) = (a - ag) - §(a) + o(la — agl)
as a — a,, where {(a) € R* is C! in a. Our next hypotheses are:

(H,) $(ag) # 0.

(H;) Considering L(a)¢, f(a, ¢) restricted to R* x C'([~r, 0], R™), they have a
derivative in a which is continuous in a, ¢ in the topology of R* x C'({-r, 0], R").

For a a scalar, hypothesis (H,) implies there are two eigenvalues crossing the imaginary
axis at & = a,y. Hypothesis (H,) does not imply that L(c)9, f(a, ¢) have a derivative in
for (@, ¢) € C. For example, if « € (0, r), the function L(a)¢ = ¢(—a) satisfies hypothesis
(H,). This function clearly has no continuous derivative in a for (a, ¢) € R x C since the
linear operator L(a) is not continuous in « in the operator topology. In Hale [7], (H;)
was stated incorrectly. The hypothesis did not state that the continuity should be in «
and ¢.

THEOREM 10.2. If (H,), (H,), (H,) are satisfied, then there is an € > O such that for
a €R, lal <e, there is a C'-manifold T, € R* of codimension one, FisC'"ina, Iy =
{a € R¥: Re Ma)=0, |Ja - ay| < €} and, for every a € T, there are a function (e, a),
an w(a, a)-periodic function x*(a, a) which is C* in a and a, w0y, 0) = wy = 2nfv,,
x*(a, 0) = 0and

x*(cg, 0)(t) = ay cos vyt + oflal) as Ja) — 0
where y cos vy t is a solution of %(t) = L(ay)x, with y ER", |y} = 1.
To indicate the proof, decompose the space C by the eigenvalues (A(@), A(a)) as
C=F, ®Q, where P, is two dimensional and spanned by the solutions of %(f) = L(a)x,
corresponding to the eigenvalue A(a), A(a). Let &, be an n x 2 matrix whose columns are

a basis for P,. If T (1) is the semigroup generated by this linear equation and x, =&, y(t)
+ z, with y € R?, z, € Q, then equation (10.4) is equivalent to

y=B,y+C fla,®,y +2,),

2= T, + [ T,(t - ¥ fla, 8 5) + 2,)ds,

where B, C, are two-by-two matrices C' in a, with the eigenvalues of B, being Ma),
Ma), ¥ = z,, ¥ is the projection of the n x n matrix X, onto Q,, X,(8) =0 for 6 <0,
Xo(0) = I (see Hale [3] for details). There is an estimate || T,(t ~ s)IQ,|l| < Ke ™®*, t >0,
for some positive constants X, a.

To construct a local center manifold by means of simple looking formulas, let us sup-
pose f and its derivative are bounded on @ x C. If ' = C'(R?, 0), (», ) ER? x T, let
§(t, ¥, h),$(0, y, h) = y, be the solution of the equation { = B,{ + C, fla, b, ¢ + h(}))
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and define the operator

(10.6) K h = [T (-)¥f(a, 8,865, y, b)) + MGG, y, W)ds.

A fixed point of K(a, h) is a center manifold of (10.4). An application of the Implicit
Function Theorem yields a center manifold M, = {(¥, ¥): ¥ = h(a, ¥)} with the function
h(a, y) continuous in «, ¥ and having as many continuous derivatives in » as the function
f(a, ¢) has in ¢ (finite, of course), A(a, 0) = 0. The flow on the center manifold is deter-
mined by the ordinary cquation

(10.7) y =8,y + C, fla, b, /D) + e, y(1)

and is given by ()(2), h(a, y(2))). All solutions with initial values on M, are defined for
t € (—oo, ), If we were considering only a local center manifold, we need here t € [~7, f),
B > 0, which would be no loss in generality. If y(¢) is a solution of (10.7), this implies that
x, = &, W(1) + ha, y(1)) is defined for ¢t € (—o0, ®), Since x, satisfies (10.4) and P (6) is
C' in 6 this implies h(a, ¥(0))(8) is continuously differentiable in 8 for § € [-r, 0]. Thus,
the fixed point set F; for K(a, y) must consist of continuously differentiable functions. Hy-
pothesis (H;) implies that condition (iv) of Lemma 10.1 is satisfied. Thus one can conclude
that ii(a, y) is C! in (a, ») (or C* if all hypotheses are satisfied for derivatives up through
order k) and that the vector field in (10.7) is C' in a, y. The proof of Theorem 10.2 is
completed by applying the corresponding result for ordinary equations.

Some very interesting bifurcations occur in problems with several delays (see Hale [8],
Nussbaum [1]).

Marsden and McCracken [1, p. 255] have a version of the Hopf Bifurcation Theorem
for general semigroups of transformations satisfying some smoothness properties. Using
Lemma 10.1, it should be possible to improve those results.
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